
 

   

SANDIA REPORT 
SAND2015-20818 
Unlimited Release 
Printed January 2015  

 

 

Motion Measurement for Synthetic 
Aperture Radar 
 

Armin W. Doerry 

 

 

Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,  
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's  
National Nuclear Security Administration under contract DE-AC04-94AL85000. 

Approved for public release; further dissemination unlimited. 

 

 

 

 

 

 

 



 - 2 -  

 

Issued by Sandia National Laboratories, operated for the United States Department of 
Energy by Sandia Corporation. 

NOTICE:  This report was prepared as an account of work sponsored by an agency of 
the United States Government.  Neither the United States Government, nor any agency 
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their 
employees, make any warranty, express or implied, or assume any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represent that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
Government, any agency thereof, or any of their contractors or subcontractors.  The 
views and opinions expressed herein do not necessarily state or reflect those of the United 
States Government, any agency thereof, or any of their contractors. 

Printed in the United States of America. This report has been reproduced directly from 
the best available copy. 

Available to DOE and DOE contractors from 

 U.S. Department of Energy 
 Office of Scientific and Technical Information 
 P.O. Box 62 
 Oak Ridge, TN  37831 
 
 Telephone: (865) 576-8401 
 Facsimile: (865) 576-5728 
 E-Mail: reports@adonis.osti.gov 
 Online ordering: http://www.osti.gov/bridge 

 

Available to the public from 

 U.S. Department of Commerce 
 National Technical Information Service 
 5285 Port Royal Rd. 
 Springfield, VA  22161 
 
 Telephone: (800) 553-6847 
 Facsimile: (703) 605-6900 
 E-Mail: orders@ntis.fedworld.gov 
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online 

 

 

 

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online


 - 3 -  

SAND2015-20818 
Unlimited Release 

Printed January 2015 

 

 

Motion Measurement for Synthetic 
Aperture Radar 

 

Armin Doerry 
ISR Mission Engineering 

Sandia National Laboratories 
Albuquerque, NM 87185-0519 

 

 
Abstract 

Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations 
typically along the flight path of a radar platform vehicle.  Optimal focusing requires 
precise knowledge of the sounding source locations in 3-D space with respect to the 
target scene.  Even data driven focusing techniques (i.e. autofocus) requires some degree 
of initial fidelity in the measurements of the motion of the radar.  These requirements 
may be quite stringent especially for fine resolution, long ranges, and low velocities.  The 
principal instrument for measuring motion is typically an Inertial Measurement Unit 
(IMU), but these instruments have inherent limited precision and accuracy.  The question 
is “How good does an IMU need to be for a SAR across its performance space?”  This 
report analytically relates IMU specifications to parametric requirements for SAR. 
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Foreword 
This report details the results of an academic study.  It does not presently exemplify any 
operational systems with respect to modes, methodologies, or techniques. 

 

 

 

 

 

 

 

Classification 

The specific mathematics and algorithms presented herein do not bear any release 
restrictions or distribution limitations. 

This distribution limitations of this report are in accordance with the classification 
guidance detailed in the memorandum “Classification Guidance Recommendations for 
Sandia Radar Testbed Research and Development”, DRAFT memorandum from Brett 
Remund (Deputy Director, RF Remote Sensing Systems, Electronic Systems Center) to 
Randy Bell (US Department of Energy, NA-22), February 23, 2004.  Sandia has adopted 
this guidance where otherwise none has been given. 

This report formalizes preexisting informal notes and other documentation on the subject 
matter herein. 
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Glossary (Acronyms) 
 
ARW  Angle Random Walk 

DGPS  Differential GPS 
DOA  Direction of Arrival 

EGI  Embedded GPS/INS 
EKF  Extended Kalman Filter 

FOG  Fiber Optic Gyro 
GMTI  Ground Moving Target Indicator [Radar] 

GPS  Global Positioning System 
HAINS High Accuracy INS 

IMU  Inertial Measurement Unit 
INS  Inertial Measurement System 

IPR  Impulse Response 
KF  Kalman Filter 

LFM  Linear Frequency Modulation 
MEMS  Micro-Electrical-Mechanical System 

NED  North, East, Down [coordinate frame] 
PGA  Phase Gradient Autofocus 

PPM  Parts Per Million 
PSD  Power Spectral Density 

RLG  Ring Laser Gyro 
RW  Random Walk 

SAR  Synthetic Aperture Radar 
VRW  Velocity Random Walk 

WGN  White Gaussian Noise 
2-D  2-Dimensional 

3-D  3-Dimensional 
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1 Introduction 
Synthetic Aperture Radar (SAR) is a concept whereby radar soundings at different points 
along a radar’s flight path are coherently processed to form a radar reflectance map of the 
ground with much finer resolution that what is otherwise achieved from a single radar 
pulse.   

Proper processing of the collection of radar soundings requires precise knowledge of the 
spatial location and orientation of the radar antenna with respect to the target scene for 
each and every pulse sounding.  If knowledge of radar’s relative position were exact, then 
the image could be formed with perfect focus (ignoring atmospheric effects).  The 
challenge for SAR processing is then typically reduced to finding efficient 
approximations to ideal processing, but the processing is nevertheless deterministic. 

The greatest challenge to an overall SAR system then is acquiring knowledge of the 
radar’s relative position to the target scene during the data collection.  This function is 
called Motion Measurements (MoMeas), or Navigation.  Instruments that perform this 
function are expensive and complex.  Maximal accuracy and precision needs to be 
measured with inherently inaccurate and imprecise instruments.  This is the most difficult 
part of the entire SAR operation and processing. 

High-performance SAR systems require high-performance motion measurement, or 
navigation data.  Kim, et al.1, describe the fundamental operation of navigation system 
used by many SAR systems designed and built by Sandia National Laboratories. 

At the core of the navigation system is an Inertial Navigation System (INS), which uses 
an IMU.  Often, additional instruments are used to aid the IMU and mitigate its 
weaknesses.  Two basic INS configurations exist. 

1. Gyro-stabilized platform INS, and 

2. Strapdown INS. 

We will limit our attention to strapdown INS. 
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Purpose of this report 

The fundamental question for SAR system design is  

“How good does the navigation need to be for SAR?” 

This rapidly becomes the question 

 “How good does the IMU need to be for SAR?” 

The purpose in answering these questions is to assess 

1. What quality of IMU does a particular SAR system design need? 

2. What is the expected SAR performance envelope for a particular IMU? 

Inferring SAR performance from IMU parameters is not quite as easy as one might 
initially think.  This report nevertheless tries to do so, but the author readily admits that a 
lot of hand-waving is offered along the way. 

This report is intended to provide a first-cut indication of the adequacy of a particular 
IMU for a given application’s performance space… but only a first cut…  It does not 
purport to substitute for detailed instrument testing and validation.   

 

Assumptions 

During the discussion below we will make a number of assumptions to simplify this 
study.  These include 

• All accelerometers have essentially equal performance. 

• All angular sensors have essentially equal performance. 

• The quality of motion measurement is isotropic.  No directions are measured with 
any better inherent fidelity than any other directions. 

We make these assumptions to simplify our analysis, but stipulate that not all directions 
and rotational axes are of equal significance to the radar. 
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2 Inertial Measurement Basics 
An IMU is an instrument designed to provide relative position and attitude information.  
Consequently it typically consists of 

• 3 accelerometers arranged to provide orthogonal acceleration measurements to 
provide a 3-D acceleration vector, and 

• 3 gyros arranged to provide orthogonal angular displacement (rotation) 
information to provide a 3-D orientation vector.  More commonly, the component 
sensor is a ‘rate gyro’ that measures angular velocity instead of angular 
displacement itself. 

Excellent discussions of inertial navigation are given by Woodman2, and in an edited 
article by Kuritsky and Goldstein.3  A good text on the subject of inertial navigation is by 
Titterton and Weston.4 

With some foresight, we will initially consider two distinct coordinate frames, namely 

1. The native IMU coordinate frame, and 

2. The ultimate coordinate frame for which we desire motion measurements.  We 
will call this the “radar” coordinate frame.  (For the purposes of this report, the 
term “radar frame”, or “radar coordinate frame”, is merely a convenience to 
delineate it from the IMU coordinate frame.) 

2.1 Two Dimensions 

We first consider a 2-D case to establish some basic concepts.  The basic configuration is 
shown in Figure 1. 
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Figure 1.  Simplified 2-D inertial measurement unit architecture. 
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In the 2-D IMU coordinate frame, defined by the x′  and y′  axes, we define the basic 
motion parameters as 

xa ′  = acceleration in IMU’s x′  direction,  

ya ′  = acceleration in IMU’s y′  direction, and 

θ  = orientation of the radar coordinate frame with respect to the IMU axis. (1) 

We can rotate the accelerations to the radar coordinate frame via 

















−

=








′

′

y

x

y

x
a
a

a
a

θθ
θθ

cossin
sincos

. (2) 

In vector notation this may be written as 

aRa ′=  (3) 

where 









=

y

x
a
a

a  = acceleration vector in radar frame, 









=′

′

′

y

x
a
a

a  = acceleration vector in IMU frame, and 









−

=
θθ
θθ

cossin
sincos

R  = the rotation vector that relates the two frames. (4) 

In general, xa ′ , ya ′ , and θ  are all functions of time.  Consequently, acceleration vector a 
and rotational vector R  are also functions of time. 

Acceleration is integrated to find the velocity vector, that is 

( ) ( ) ( )0
0

tdt
t

t
vav += ∫ tt . (5) 

Velocity is in turn integrated to find the position vector, that is 

( ) ( ) ( )0
0

tdt
t

t
pvp += ∫ tt . (6) 
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To proceed with an error analysis we distinguish between ‘true’ values, and 
‘measurement’ values that are indicated from the instruments themselves.  Consequently 
we identify 

( ) ( ) ( )ttt ttt aRa ′=  = true acceleration, based on true motion components, and 
( ) ( ) ( )ttt mmm aRa ′=  = measured acceleration, indicated by the instruments, (7) 

where the rotation matrices are 

( ) ( ) ( )
( ) ( )






−

=
tt
tt

t
tt

tt
t θθ

θθ
cossin
sincos

R , and 

( ) ( ) ( )
( ) ( )






−

=
tt
tt

t
mm

mm
m θθ

θθ
cossin
sincos

R . (8) 

We generally relate measured to true accelerations as 

( ) ( ) ( )ttt tm εaaa += , and 
( ) ( ) ( )ttt tm εθθθ += , (9) 

where error quantities are given as 

( )tεa  = the error in acceleration measurements, and 
( )tεθ  = the error in angular orientation measurement.  (10) 

Without loss of generality, we may define the initial reference time as 00 =t .  
Consequently, the velocity vectors are specifically 

( ) ( ) ( )0
0

t

t

tt dt vav += ∫ tt , and 

( ) ( ) ( )0
0

m

t

mm dt vav += ∫ tt , (11) 

and the position vectors are specifically 

 

( ) ( ) ( )0
0

t

t

tt dt pvp += ∫ tt , and 

( ) ( ) ( )0
0

m

t

mm dt pvp += ∫ tt . (12) 
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This allows the position and velocity errors to be calculated as 

( ) ( ) ( ) ( ) ( )( ) ( )0
0

εε τττ pvvppp +−=−= ∫
τ

τmτm dτττ , and 

( ) ( ) ( ) ( ) ( )( ) ( )0
0

εε τττ vaavvv +−=−= ∫
τ

τmτm dτττ . (13) 

Clearly, differences between true and measured accelerations determine the ultimate 
range error.  But the acceleration error is a function of both the IMU accelerometer values 
as well as the IMU’s angular orientation, namely 

( ) ( ) ( ) ( ) ( ) ( ) ( )ttttttt ttmmtm aRaRaaa ′−′=−=ε . (14) 

We further identify that the rotation matrix used in calculations is a function of the 
measured angular orientations, which includes any angular errors, namely 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )






++−
++

=
tttt
tttt

t
tt

tt
m

εε

εε
θθθθ
θθθθ

cossin
sincos

R . (15) 

For expedience, we will hereafter assume that the IMU frame is aligned with the radar 
frame, that is ( ) 0=ttθ .  As a practical matter, we may also generally assume IMU 
instruments of sufficient quality that angular errors are small, namely 

( ) 1<<tεθ . (16) 

This allows the simplified approximation 

( ) ( ) ( )
( ) ( )

( )
( ) 








−

≈







−

=
1sin

sin1
cossin
sincos

t
t

tt
tt

tm
ε

ε

εε

εε
θ

θ
θθ
θθ

R  (17) 

or 

( ) ( )
( ) 








−

+≈
0sin

sin0
t

t
tm

ε

ε
θ

θ
IR . (18) 

Note that for the true rotation matrix,  

( ) IR =tt . (19) 

Consequently, we identify and calculate rotation error matrix as 
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( ) ( ) ( )( ) ( )
( ) 








−

≈−=
0sin

sin0
t

t
ttt tm

ε

ε
ε θ

θ
RRR . (20) 

This allows us to relate the effective acceleration error as 

( ) ( )( ) ( ) ( )tttt tm aaRIa ′−′+= εε  (21) 

which can be expanded to 

( ) ( ) ( ) ( ) ( )ttttt mtm aRaaa ′+′−′= εε  (22) 

and further manipulated to 

( ) ( ) ( ) ( ) ( )( )ttttt t εεεε aaRaa ′+′+′=  (23) 

and finally to 

( ) ( ) ( ) ( ) ( ) ( )tttttt t εεεεε aRaRaa ′+′+′= . (24) 

After all this, some important observations include 

• An acceleration error in the radar frame can be induced by instrument acceleration 
errors. 

• An acceleration error in the radar frame can also be induced by a real acceleration 
with an instrument angular orientation error. 

• Any acceleration error, by whatever source, will integrate into a measured 
velocity error, and ultimately a radar measured position error. 

2.2 Three Dimensions 

We now increase the complexity of our model to 3 dimensions, and presume that the 
angular sensor is now a rate gyro.  This configuration is shown in Figure 2. 

In the 3-D IMU coordinate frame, the basic angular rate sensor parameters are 

x′ω  = angular velocity about the x′  direction,  

y′ω  = angular velocity about the y′  direction, and 

z′ω  = angular velocity about the z′  direction.  (25) 

We recognize that these are generally functions of time.  However, we will omit the 
typical function notation for clarity in the subsequent development. 
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Figure 2.  Simplified 3-D inertial measurement unit architecture. 
 

The actual rotation parameters to orient the acceleration components into a useful 
coordinate frame are somewhat more problematic, as the rotations about the various axes 
are not commutative.  The order of the rotations about the various axes makes a 
difference to the final orientation.  Consider some rotations defined as 

x′θ  = rotation angle about the x′  axis, 

y′θ  = rotation angle about the y′  axis, and 

z′θ  = rotation angle about the z′  axis.  (26) 

The final orientation of a coordinate frame depends on the order in which the rotations 
are applied.  Applying rotations in the order xyz ′′′ θθθ ,,  produces the following net 
rotation matrix, 
















−






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

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

 −



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
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

−
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′′
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′′

′′

′′

100
0cossin
0sincos

cos0sin
010

sin0cos

cossin0
sincos0

001

zz

zz

yy

yy

xx

xx θθ
θθ

θθ

θθ

θθ
θθR , (27) 

or the combined result 
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A different order of rotations would yield a different net rotation matrix.  However, for 
very small rotations, this becomes the differential rotation matrix 

















−
−

−
+=

















−
−

−
=

′′

′′

′′

′′

′′

′′

0
0

0

1
1

1

xy

xz

yz

xy

xz

yz

δθδθ
δθδθ
δθδθ

δθδθ
δθδθ
δθδθ

δ IR . (29) 

We now define the differential component as 

















−
−

−
=

′′

′′

′′

0
0

0

xy

xz

yz

δθδθ
δθδθ
δθδθ

δΘ . (30) 

Recall that the rotation matrix, as well as its components, is generally a function of time.  
This lets us set up the equation 

( ) ( ) ( ) ( ) ( ) ( ) ( )
t

t
t

ttt
t

tttt
dt
d

ttt d
d

d
d

d
d

ddd

ΘRRRRRRR
000

limlimlim
→→→

=
−

=
−+

= . (31) 

But we can expand the limit, and define the angular velocity matrix as 

( )
( ) ( )

( ) ( )
( ) ( ) 
















−
−

−
==

′′

′′

′′

→
0

0
0

lim
0

tt
tt
tt

t
t

xy

xz

yz
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Consequently, by combining these results, we have the differential equation 

( ) ( ) ( )d t t t
dt

=R R Ω  (33) 

which has the solution 

( ) ( ) ( )
0

0 exp
t

t dt t
 
 =
 
 
∫R R Ω . (34) 

Typically, for SAR, we do not expect large rotations during a synthetic aperture.  
Consequently, for angular rates and times t that lead to small angular displacements, for 
the purposes of this report we can expand the exponential and approximate 

( ) ( ) ( ) 












+≈ ∫

t
dt

0
0 ttΩIRR . (35) 
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This can be expanded to the approximation 
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Of course, for small angular displacements, this is merely 
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where the angular displacements are 

( ) ( )∫ ′′ =∆
t

xx dt
0

ttωθ , 

( ) ( )∫ ′′ =∆
t

yy dt
0

ttωθ , and 

( ) ( )∫ ′′ =∆
t

zz dt
0

ttωθ . (38) 

Nevertheless we will define the appropriate true angular displacements as 

( )ttx ,′∆θ  = true rotation angle about the x′  axis, 

( )tty ,′∆θ  = true rotation angle about the y′  axis, and 

( )ttz ,′∆θ  = true rotation angle about the z′  axis.  (39) 

The true rotation matrix is then given by 
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Furthermore, the measured angular displacements are defined as 
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( )tmx ,′∆θ  = measured rotation angle about the x′  axis, 
( )tmy ,′∆θ  = measured rotation angle about the y′  axis, and 

( )tmz ,′∆θ  = measured rotation angle about the z′  axis.  (41) 

The measured rotation matrix is then given by 
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The error in the rotation matrix is given by 

( ) ( ) ( )ttt tm RRR −=ε . (43) 

This is expanded to 
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and then manipulated to 
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where the respective errors between measured and true component values are then 

( ) ( ) ( )ttt txmxx ,,, ′′′ ∆−∆=∆ θθθ ε  = error angle about the x′  axis, 
( ) ( ) ( )ttt tymyy ,,, ′′′ ∆−∆=∆ θθθ ε  = error rotation angle about the y′  axis, and 

( ) ( ) ( )ttt tzmzz ,,, ′′′ ∆−∆=∆ θθθ ε  = error rotation angle about the z′  axis.  (46) 
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We will again assume small angular errors, namely 

( ) 1, <<∆ ′ tx εθ , 

( ) 1, <<∆ ′ ty εθ , and 

( ) 1, <<∆ ′ tz εθ . (47) 

Based on previous approximations, the rotation matrix error can be reasonably 
approximated as 
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To be a little more explicit, in terms of angular rate errors, 
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where we have substituted the angular displacements with integrated angular rates, 
namely 

( ) ( )∫ ′′ =∆
t

xx dt
0

,, ttωθ εε , 

( ) ( )∫ ′′ =∆
t

yy dt
0

,, ttωθ εε , and 

( ) ( )∫ ′′ =∆
t

zz dt
0

,, ttωθ εε . (50) 

Furthermore, out of convenience we will also assume ( ) IR =0t . 

Now, in the 3-D IMU coordinate frame, we define the basic acceleration sensor 
parameters as 
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xa ′  = acceleration in x′  direction,  

ya ′  = acceleration in y′  direction, and 

za ′  = acceleration in z′  direction.  (51) 

Consequently, the acceleration vector is constructed as 



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
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
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


=′

′

′

′

z

y

x

a
a
a

a . (52) 

With respect to true and measured values, it remains true that 

( ) ( ) ( ) ( ) ( ) ( ) ( )ttttttt ttmmtm aRaRaaa ′−′=−=ε  (53) 

which can be expanded to 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tttttttttt tmttmt εεεε aRaRaRaRRa ′+′=′−′+=  (54) 

and then approximated as 

( ) ( ) ( ) ( ) ( )ttttt tt εεε aRaRa ′+′≈ . (55) 

For expedience, in this development we will ignore the effects of gravity and other 
effects such as earth rotation, etc.  Recall that in an inertial coordinate frame the velocity 
and position errors are 

( ) ( ) ( )0
0

εεε ττ vav += ∫
τ

dτ , and 

( ) ( ) ( )0
0

εεε ττ pvp += ∫
τ

dτ . (56) 

Some observations then include 

• An acceleration error in the radar frame can be induced by instrument acceleration 
errors. 

• An acceleration error in the radar frame can also be induced by real acceleration 
with an instrument angular orientation error. 

• Any net acceleration error, by whatever source, will integrate into a measured 
velocity error, and ultimately a radar measured position error, and finally a range 
error to the target reference point. 
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2.3 Effects of Gravity 

The forces working on an IMU include gravity, which will in fact be measured by the 
accelerometers.  Consequently, since gravity is a component of the accelerations apparent 
to the accelerometers, the measured accelerations need to be corrected for gravity 
acceleration in order to be useful for motion measurement.  Gravity acceleration would 
be perfectly subtracted if the measured accelerations of the instruments were perfect.  
However, gravity acceleration will in fact be subtracted imperfectly due to errors in the 
knowledge of the IMU orientation. 

With respect to true and measured values, both will have gravity components.  However, 
we are interested in accelerations where the effects of gravity are subtracted.  Recall that 
the acceleration error is calculated to be 

( ) ( ) ( ) ( ) ( ) ( ) ( )ttttttt ttmmtm aRaRaaa ′−′=−=ε . (57) 

This was manipulated to 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ttttttttt ttmt aRaRaRaRa ′+′≈′+′= εεεεε . (58) 

However, now the true and measured accelerations include gravity.  We can explicitly 
show the effects of gravity by manipulating this to 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )tttttttt ggtt aRaaRaRa ′+′−′+′≈ εεεε . (59) 

where 

( )tga′  = acceleration due to gravity in the IMU coordinate frame. (60) 

We note that the calculus to find radar velocity needs to be on the acceleration after 
gravity has been removed, that is, the acceleration used to find radar motion integrates the 
quantity ( ) ( )( )tt gt aa ′−′ .  Specifically, the radar velocity calculation needs to be 

( ) ( ) ( ) ( )( ) ( )0
0

t

t

gttt dt vaaRv +′−′= ∫ tttt . (61) 

Consequently, a radar at constant velocity will exhibit ( ) ( )( ) 0=′−′ tt gt aa .  This means that 
gravity will still influence the net acceleration error via an angular orientation 
measurement error. 

Note that the gravity acceleration vector ( )tga′  is a function of time because the 
orientation of the IMU coordinate frame with respect to the earth’s surface may in 



 - 23 -  

general also be a function of time.  However the magnitude and earth-centric direction of 
this vector is constant, at least to the degree that gravity is constant. 

Note also that since 

( ) 8.9≈′= tg ga m/s2,  (62) 

it is not unreasonable to expect that gravity is a strong contributor to motion measurement 
errors.  In fact, we would expect it to often swamp any other non-gravity accelerations. 

For example, consider a 0.02 degree error in the presumed direction of gravity.  This will 
generate an erroneous 0.0017 m/s2 horizontal acceleration indication.  After 10 seconds, 
this results in a 17 cm position error.  At Ku-band this represents 18.9 wavelengths (for a 
round-trip), enough to cause fairly severe misfocus, and unacceptable residual migration 
at resolutions finer than this value. 

2.4 Other Effects 

Other contributors to acceleration and angular measurement errors might include 

• Gravity anomalies 
 
Gravity in general varies in both direction and magnitude with latitude, longitude, 
altitude, earth topography, tides, and lateral density variations.  Magnitude 
variations may be up to about 0.7%.5  

• Tidal effects 
 
The gravitational attraction of the moon itself will cause up to a 0.0004 degree 
deflection of the gravity vector during a day.  (This is calculated from the moon’s 
gravitational attraction being approximately 63.38 10−×  that of earth’s gravity.) 

• Earth rotation effects 
 
The earth rotates at about 15.04 degrees/hour (360 degrees per sidereal day, which 
is approximately 23.9344 hours).  This is significant with respect to most gyro 
specs. 

• Coriolis effect 
 
In physics, the Coriolis effect is an apparent deflection of moving objects when 
they are viewed from a rotating frame of reference, such as the earth.  It is 
mathematically deduced from the law of inertia. 

Some of these are easily compensated, others are not, and others yet may not be worth 
compensating, depending on the requirements of motion measurement. 
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3 The Nature of IMU Errors 
IMUs vary considerably in the fidelity of their outputs.  They are generally classified into 
three different major grades. 

Navigation Grade IMUs, sometimes called High Accuracy Inertial Navigation Systems 
(HAINS), are the highest quality IMUs and are generally designed for long-term 
accuracy guidance and control applications.  Typical applications include aircraft 
navigation.  An example of this is the Honeywell HG-9900 Navigation Grade IMU.6 

Tactical Grade IMUs are of lesser quality than the Navigation Grade IMUs.  Typical 
applications include shorter term missile guidance and control, and sensor orientation.  
Examples include the Northrop Grumman LN-200 Fiber Optic IMU,7 Honeywell HG-
1700 IMU,8 and the Honeywell HG-1900 MEMS IMU.9 

The lowest quality IMUs go by names such as Automotive Grade, and MEMS grade.  
That is not to say that they aren’t useful; just that they are of lesser precision and 
accuracy than the other major grades.  An example is the Honeywell HG-1930 MEMS 
IMU.10 

Some technologies lend themselves more to one grade than another.  For example, Ring 
Laser Gyro (RLG) components tend to be found in Navigation Grade IMUs, whereas 
Fiber Optic Gyro (FOG) components tend to be found in Tactical Grade IMUs11, and 
Micro-Electro-Mechanical Systems (MEMS) components tend to be found in 
Automotive Grade IMUs.  That is not to say that these relationships are exclusive, nor 
that other technologies for angle or rate sensing aren’t also useful.  For example, The 
Honeywell HG-1900 contains MEMS components but offers performance in many 
respects comparable to other Tactical Grade IMUs. 

A good discussion of inertial sensor technologies is given by Lawrence.12 

There are substantial cost differences between these various technologies and IMU 
grades, hence the desire to use something ‘good enough’ but not excessively expensive.  

We also note that IMU outputs typically feed an Extended Kalman Filter (EKF) that uses 
independent position/motion measurements to aid the IMU and help estimate IMU errors.  
More on this later. 

For the following discussion, we employ an initial error model similar to that presented 
by Flenniken, et al.13,14   
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3.1 Accelerometer Errors 

An accelerometer is designed to measure acceleration.  There are generally three 
accelerometers in an IMU, oriented in an orthogonal manner to measure acceleration in a 
3-D space.  We initially model the measured acceleration in a particular direction as 

( )














+++++

+++++
= ⊥

2,1,0,,0,

2 sin)1(

aaaqaa

nmtntat
m nnnnb

aaaa
a

ϕϕbbb
 (63) 

where 

ta  = true acceleration in the desired measurement direction, 
β  = scale factor error. 

aβ  = scale factor asymmetry, 

nβ  = scale factor nonlinearity, 

⊥a  = true acceleration in the orthogonal (perpendicular) direction, 

mϕ  = angular misalignment error, 

nϕ  = angular nonorthogonality error, 

0,ab  =  constant bias error, 

qan ,  = quantization noise, 

0,an  = white noise error (velocity random walk error source), 

1,an  = flicker noise error, 

2,an = acceleration random walk error. (64) 

We identify the acceleration error as 

( )


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+++++

++++
=−= ⊥

2,1,0,,0,
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nmtntat
tm nnnnb

aaaa
aaa

ϕϕbbb
ε . (65) 

3.1.1 Scale Factor Error 

While scale factor errors, misalignment error, and nonorthogonality error can generally 
be calibrated to insignificance for SAR applications, they may not always be so 
calibrated, and residual errors may exist. 

Scale factor errors are often lumped together into a single ‘scale factor accuracy’ number.  
Consequently 

( ) ( ) tttntat aaaaa Β=++ 2βββ  (66) 
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where 

( )taΒ  = scale factor perturbation function. (67) 

Accelerometer specifications typically limit ( )taΒ  to some number of Parts Per Million 
(PPM), typically up to several hundred PPM for tactical grade IMU accelerometers.  This 
means that the degree to which this affects acceleration measurements, in fact depends on 
acceleration.  In any case, scale factor accuracy is limited to 

( ) maxΒ≤Β ta . (68) 

Note that the true acceleration ta  is a function of time, as the flight path of the IMU is a 
function of time.  The actual position error change is a double integration of this rate, 
namely 

( )∫ ∫Β=
T

tt dtdtaap
0

ε . (69) 

This position error is bounded by 

( ) ∫ ∫∫ ∫ Β≤Β≤
T

t

T

tt dtdtadtdtaap
0

max
0

ε . (70) 

The acceleration error accumulated is clearly dependent on the degree of maneuver in the 
radar’s flight path.  In addition, there is gravity.  For benign flight paths, especially 
straight and level, nearly constant velocity flight paths, ta  remains rather small in lateral 
directions, and is effectively gravity in the vertical direction.  This makes scale factors a 
relatively insignificant contributor to lateral acceleration errors over typical synthetic 
aperture times.  However, gravity is a fairly large acceleration and furthermore is 
persistent during the synthetic aperture.  Woodman2 states “In most applications the 
magnitude of g is much greater than the mean absolute acceleration of the IMU itself.” 

The contribution of gravity depends on the direction of interest, and is given by 

2
sinsin

2
max

0
max

Tgdtdtgp
T

ψψε Β=Β≤ ∫ ∫ . (71) 

Airborne SAR grazing angles may be as shallow as low-single-digit degrees, or as steep 
as perhaps 60 degrees, and sometimes more.  We note that from a given altitude, a 
depression angle of 5 degrees will intersect the ground approximately ten times farther 
away than at a depression angle of 60 degrees.  For a given azimuth resolution, then the 
synthetic aperture for the shallow grazing angle will be ten times longer than for the steep 
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grazing angle.  Furthermore, the projection of gravity in those directions will also differ 
by approximately a factor of ten. 

So, the largest position error in the direction of the target will likely occur at the 
shallowest grazing angle, where the synthetic aperture is the longest. 

Example 1 

Consider the IMU on a platform where accelerations are dominated by gravity, 
and SAR imaging is at a grazing angle of 5 degrees.  If scale factor accuracy were 
300 PPM, then after 10 seconds, the net position error in the direction of the target 
scene may be as high as 0.013 m.  This is typically easily accommodated by 
autofocus operations. 

Example 2 

Consider the IMU on a platform where accelerations are dominated by gravity, 
and SAR imaging is at a grazing angle of 5 degrees.  If scale factor accuracy were 
300 PPM, then after 100 seconds, the net position error in the direction of the 
target scene may be as high as 1.3 m.  This is typically not easily accommodated 
by autofocus operations for fine resolution SAR. 

To be sure, we have considered just gravity to calculate this error bound.  Additional 
accelerations will compound this.   

In any case, accelerometer scale factor errors can be expected to contribute to position 
errors more so for maneuvering platforms, non-benign flight paths, and longer synthetic 
apertures. 

Anecdote: 

The LN-200 scale factor accuracy is specified by the manufacturer as 100-5000 PPM., 
depending on IMU grade.  Other sources indicate nonlinearity of 50.0 µg/g2.1 

3.1.2 Misalignment and Nonorthogonality Errors 

An accelerometer alignment error (misalignment) allows the accelerometer to measure 
acceleration along an axis different than what is presumed.  A nonorthogonality error 
causes an improper correction for the actual nonorthogonality.  Both errors cause an 
improper acceleration measurement, by allowing orthogonal accelerations to perturb true 
acceleration measurements, and ultimately yield accumulated position errors.  This again 
allows coupling of undesired accelerations such as gravity in undesired directions. 

The resultant acceleration error in this case is bounded by 

( )nmaa ϕϕε +≤ ⊥ sin . (72) 
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As with scale factor errors, an angular error due to misalignment or nonorthogonality will 
allow a portion of gravity to integrate into a position error, which we bound as 

( )
2

sin
2Tgp nm φφε +≤ . (73) 

Example 1 

Consider the IMU on a platform that exhibits misalignment and nonorthogonality 
errors that were limited to 0.1 mrad (21 arcsec.).  With 1 g of orthogonal 
acceleration, then after 10 seconds, the net position error may change by as much 
as 0.049 m.  This is typically easily accommodated by autofocus operations. 

Example 2 

Consider the IMU on a platform that exhibits misalignment and nonorthogonality 
errors that were limited to 0.1 mrad (21 arcsec.).  With 1 g of orthogonal 
acceleration, then after 100 seconds, the net position error may change by as 
much as 4.9 m.  This is typically not easily accommodated by autofocus 
operations for fine resolutions. 

Again, to be sure, we have considered just gravity to calculate this error bound.  
Additional accelerations will compound this.   

Nevertheless, misalignment or nonorthogonality errors can be expected to contribute to 
position errors more so for maneuvering platforms, non-benign flight paths, and longer 
synthetic apertures. 

Anecdote: 

The LN-200 misalignment is specified to be 20-200 arcsec., depending on IMU grade.1 

3.1.3 Constant Bias Error 

This bias term 0,ab  is also sometimes called the ‘random’ bias term.  It is considered a 
constant while the accelerometer is operating, but will vary with random value from one 
unit turn-on (power-up) to the next. 

This term is readily estimated by the EKF and thereby removed from the measurements. 

Anecdote 

The LN-200 manufacturer specifies this value as 300-3000 µg (1-sigma), depending on 
IMU grade. 
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3.1.4 Noise Errors 

Scale factor errors, misalignment error, and nonorthogonality error can generally be 
calibrated to insignificance for SAR applications.  The constant bias error can generally 
be adequately mitigated via an alignment procedure and adaptation of the EKF.  This 
leaves the four noise terms of our model.  The error model then is reduced to 

2,1,0,, aaaqa nnnna +++≈ε . (74) 

Of these noise terms, an Allan variance (see Appendix A) analysis shows that different 
components dominate on different time scales.  Since SAR synthetic apertures typically 
last from single digit seconds to perhaps 100 seconds or so, and IMU sampling 
frequencies are in the range of 100 Hz or higher, then quantization noise can be expected 
to be a small contributor to the overall error.  With respect to the other terms, we identify 
the following parameters with customary units in parentheses. 

N  = white noise parameter responsible for angular random walk ( Hzg /µ ), 
B  = bias instability parameter ( gµ ), and 

K  = acceleration random walk parameter ( 21/ sgµ ). (75) 

From these we identify the following two-sided noise power spectral densities. 

( ) ( ) HzgNfSN
22 µ=  , (76) 

( ) ( ) Hzg
f

BfSB
2

2

2
µ

π
= , and (77) 

( )
( )

( ) Hzg
f

KfSK
2

2

2

2
µ

π
= . (78) 

Of course, the PSD of the accumulated independent noise terms is the sum of these PSDs. 

Example 

We illustrate the characteristics of these noise components with a hypothetical 
accelerometer with the following parameters.  

N  =  50 Hzg /µ , 
B  =  50 gµ , and 

K  =  5 21/ sgµ . (79) 

The resulting PSD is illustrated in Figure 3.   
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Figure 3.  Hypothetical accelerometer noise PSD. 

 

We offer the following observations and comments. 

• The example is typical with respect to what can be found in the literature with 
respect to the following.  The noise PSD in the frequency region of greatest 
interest to SAR image formation ( 22 1010 <<− f ) is typically dominated by 
white noise at the higher end, and by flicker noise at the lower end of this range.  
Acceleration random walk probably does not contribute meaningful variations to 
the bias during typical synthetic apertures, but may when aperture times enter 
triple-digit seconds. 

• Noise parameters are often not reported on manufacturer data sheets.  However, 
some values can be found elsewhere in the literature, especially for N  and B .  
Information on the parameter K  is much more scarce. 

• These parameters can be determined via Allan variance measurements (see 
Appendix A).  Published Allan variance plots can sometimes be found in the 
literature. 

Anecdote 

The LN-200 manufacturer’s data sheet doesn’t specify these parameters.  Other sources 
specify for the LN-200 the values N  =  50 µg/ Hz ,  and B = 50 µg.1     
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3.1.5 Comprehensive Accelerometer Error Model 

Collecting the results of the previous discussion, we somewhat reduce the accelerometer 
error model to 

( ) 2,1,0,max sin aaanmt nnnaaa +++++Β= ⊥ ϕϕε . (80) 

The relevant accelerometer errors are collected and modeled in Figure 4.  Note that the 
constant bias error is omitted as it is easily filtered, and quantization error is omitted as 
inconsequential to the time scales of interest. 
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Figure 4.  Accelerometer model with error sources. 
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3.2 Rate Gyro Errors 

A rate gyro is designed to measure angular velocity.  There are generally three rate gyros 
in an IMU, oriented in an orthogonal manner to measure angular velocity in a 3-D space.  
We initially model the measured angular velocity around a particular axis in a particular 
direction as 

( )














+++++

+++++
= ⊥

2,1,0,,0,

2 sin)1(

ωωωωω

φφωωγωγωγ
ω

nnnnb q

nmtntat
m  (81) 

where 

tω  = true angular rate in the desired measurement direction, 
γ  = scale factor error. 

aγ  = scale factor asymmetry, 

nγ  = scale factor nonlinearity, 

⊥ω  = true angular rate in the orthogonal (perpendicular) direction, 

mφ  = angular misalignment error, 

nφ  = angular nonorthogonality error, 

0,ωb  =  constant bias error, 

qn ,ω  = quantization noise, 

0,ωn  = white noise error (angular random walk error source), 

1,ωn  = flicker noise error, 

2,ωn  = rate random walk error. (82) 

We identify the angular rate error as 

( )














+++++

++++
=−= ⊥

2,1,0,,0,

2 sin

ωωωωω
ε

φφωωγωγγω
ωωω

nnnnb q

nmtntat
tm . (83) 

3.2.1 Scale Factor Error 

While scale factor errors, misalignment error, and nonorthogonality error can generally 
be calibrated to insignificance for SAR applications, they may not always be so 
calibrated, and residual errors may exist. 

Scale factor errors are often lumped together into a single ‘scale factor accuracy’ number.  
Consequently 
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( ) ( ) tttntat ωωωγωγγω Γ=++ 2  (84) 

where 

( )tωΓ  = scale factor perturbation function. (85) 

Gyro specifications typically limit ( )tωΓ  to some number of PPM, typically up to 
several hundred PPM for tactical grade IMU gyros.  This means that the degree to which 
this affects angular rate, in fact depends on angular rate.  In any case, scale factor 
accuracy is limited to 

( ) maxΓ≤Γ tω . (86) 

Note that tω  is a function of time, as the flight path of the IMU is a function of time.  
The actual angular error change is an integration of this rate, namely 

( )∫Γ=∆
T

tt dt
0

ωωθε . (87) 

This angular error is bounded by 

( ) ∫∫ Γ≤Γ≤∆
T

t

T

tt dtdt
0

max
0

ωωωθε . (88) 

The angular error accumulated is clearly dependent on the degree of maneuver in the 
radar’s flight path.  For benign flight paths, especially straight and level flight paths, tω  
remains rather small, making scale factors a relatively insignificant contributor to gyro 
rate errors over typical synthetic aperture times.  However, this may not be the case on 
maneuvering platforms. 

If we assume that the orientation of the rate-gyro is approximately the same at beginning 
and end of the synthetic aperture, then 

0
0

≈∫
T

tdtω . (89) 

but the integral of the magnitude of the rate is 

d

T

t dt θω ∆≈∫ 2
0

 (90) 
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where  

dθ∆  = the accumulated angular displacement in one direction. (91) 

Consequently, we can calculate a bound on the accumulated angular error as  

dθθε ∆Γ≤∆ 2max . (92) 

Recall that an angular error that affects the presumed direction of gravity allows gravity 
to couple into a lateral acceleration.  Such an error is any that yields an elevation 
direction error.  The resultant gravity coupling in turn is double-integrated into a position 
error, which for small errors becomes 

( ) ( )d

T Tgdtdtgp θθεε ∆Γ≤∆≤ ∫ ∫ max
2

0
2sin

2
sin . (93) 

This, of course, assumes that the accumulated angular error is largely accumulated near 
the beginning of the synthetic aperture.  If the angular displacement is given in radians, 
then this becomes 

dgTp θε ∆Γ≤ max
2 . (94) 

The relevant angular rates applied to the gyros during a synthetic aperture would be the 
roll and pitch rates of the aircraft.  Of these, the roll extents and rates are usually greater. 

Example 1 

Consider the IMU on a platform that exhibits a cumulative roll displacement of 30 
degrees during a 10 second synthetic aperture.  If scale factor accuracy were 100 
PPM, then after 10 seconds, the net position error may be as high as 0.051 m.  
This is typically easily accommodated by autofocus operations. 

Example 2 

Consider the IMU on a platform that exhibits a cumulative roll displacement of 30 
degrees during a 100 second synthetic aperture.  If scale factor accuracy were 100 
PPM, then after 100 seconds, the net position error may be as high as 5.1 m.  This 
is typically not easily accommodated by autofocus operations. 

To be sure, we have run together a number of worst case scenarios to arrive at the error 
bound.  These included absolute worst-case scale factor accuracy, no cancellation of 
errors with different signs in tω , and the entire angular displacement occurring at the 
beginning of the synthetic aperture.   
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Nevertheless, scale factor errors can be expected to contribute to position errors more so 
for maneuvering platforms, non-benign flight paths, and longer synthetic apertures. 

Anecdote: 

The LN-200 scale factor accuracy is specified by the manufacturer as 100-500 PPM, 
depending on IMU grade. 

3.2.2 Misalignment and Nonorthogonality Errors 

A rate-gyro alignment error (misalignment) allows the gyro to measure angular rates 
around an axis different than what is presumed.  A nonorthogonality error causes an 
improper correction for the actual nonorthogonality.  Both errors cause an improper rate-
gyro measurement, by allowing orthogonal angular rates to perturb true angular rates, and 
ultimately yield accumulated angular (attitude) errors.  This again allows coupling of 
undesired accelerations such as gravity in undesired directions. 

This angular error in this case is bounded by 

( ) ( ) dnm

T

nm dt θφφφφωθε ∆+≤+≤∆ ∫ ⊥ sinsin
0

. (95) 

In this case,  

dθ∆  = net angular displacement during synthetic aperture. (96) 

As with scale factor errors, an angular error due to misalignment or nonorthogonality will 
allow a portion of gravity to integrate into a position error, which we bound as 

( )
d

nmgTp θφφ
ε ∆

+
≤

2
sin2 . (97) 

Example 1 

Consider the IMU on a platform that exhibits a net heading change of 30 degrees 
during a 10 second synthetic aperture.  If the misalignment and nonorthogonality 
errors were limited to 0.1 mrad (21 arcsec.), then after 10 seconds, the net position 
error may change by as much as 0.026 m.  This is typically easily accommodated 
by autofocus operations. 

Example 2 

Consider the IMU on a platform that exhibits a net heading change of 30 degrees 
during a 100 second synthetic aperture.  If the misalignment and nonorthogonality 
errors were limited to 0.1 mrad (21 arcsec.), then after 100 seconds, the net 
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position error may change by as much as 2.61 m.  This is typically not easily 
accommodated by autofocus operations at fine resolutions. 

Again, to be sure, we have assumed a worst case scenario to arrive at the error bound.  
This included the entire angular displacement occurring at the beginning of the synthetic 
aperture.   

Nevertheless, misalignment or nonorthogonality errors can be expected to contribute to 
position errors more so for maneuvering platforms, non-benign flight paths, and longer 
synthetic apertures. 

Anecdote: 

The LN-200 gyro misalignment is specified to be 20-200 arcsec., depending on IMU 
grade.1 

3.2.3 Constant Bias Error 

This bias term 0,ωb  is also sometimes called the ‘random’ bias term.  It is considered a 
constant while the gyro is operating, but will vary with random value from one unit turn-
on (power-up) to the next. 

This term is readily estimated by the EKF and thereby removed from the measurements. 

Anecdote 

The LN-200 manufacturer specifies this value as 0.5-3 h°  (1-sigma), depending on IMU 
grade. 

3.2.4 Noise Errors 

Scale factor errors, misalignment error, and nonorthogonality error can generally be 
calibrated to insignificance for SAR applications.  The constant bias error can generally 
be adequately mitigated via an alignment procedure and adaptation of the EKF.  This 
leaves the four noise terms of our model.  The error model then is reduced to 

2,1,0,, ωωωωεω nnnn q +++≈ . (98) 

Of these noise terms, an Allan variance analysis shows that different components 
dominate on different time scales.  Since SAR synthetic apertures typically last from 
single digit seconds to perhaps 100 seconds or so, and IMU sampling frequencies are in 
the range of 100 Hz or higher, then quantization noise can be expected to be a small 
contributor to the overall error. 

With respect to the other terms, we identify the following parameters with customary 
units in parentheses. 
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N  =  white noise parameter responsible for angular random walk ( h/° ) 
B  =  bias instability parameter ( h/° ). 
K  =  rate random walk parameter ( 23/ h° ). (99) 

From these we identify the following two-sided noise power spectral densities. 

( ) ( ) HzhNfSN
223600 °=  . (100) 

( ) ( ) Hzh
f

BfSB
2

2

2
°=

π
. (101) 

( )
( )

( ) Hzh
f

KfSK
2

2

2

23600
°=

π
. (102) 

Of course, the PSD of the accumulated independent noise terms is the sum of these PSDs. 

Note that h/°  can be converted to s/°  by dividing by 3600.  Of course ( )2/ h°  can be 

converted to ( )2/ s°  by dividing by 36002, or 12960000. 

Example 

We illustrate the characteristics of these noise components with a hypothetical 
gyro with the following parameters.  

N  =  0.04 h/°  
B  =  0.4 h/°  
K  =  0.4 23/ h° . (103) 

The resulting PSD is illustrated in Figure 5.   
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Figure 5.  Hypothetical rate gyro noise PSD. 

We offer the following observations and comments. 

• The example is typical with respect to what can be found in the literature with 
respect to the following.  The noise PSD in the frequency region of greatest 
interest to SAR image formation ( 22 1010 <<− f ) is typically dominated by 
white noise.  Flicker noise may become significant at the lower end of this range, 
but rate random walk probably does not contribute meaningful variations to the 
bias during typical synthetic apertures. 

• Manufacturers will usually specify N  in their data sheets.  The parameter B  is 
considerably more scarce, and K  is very difficult to find for most IMU gyros. 

• These parameters can be determined via Allan variance measurements.  Published 
Allan variance plots can sometimes be found in the literature. 

Anecdote 

The LN-200 manufacturer’s data sheet specifies N  =  0.05-0.15 h/° , but not B  or K .  
Other sources specify for the LN-200 the values N  =  0.04-0.15 h/° ,  and B = 0.35 

h/° .1  Evidence suggests that the Northrop Grumman LN-200 IMU’s gyro performance 
is dominated by N  in the region of interest to SAR.15,16   
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3.2.5 Comprehensive Rate Gyro Error Model 

Collecting the results of the previous discussion, we somewhat reduce the rate gyro error 
model to 

( ) 2,1,0,max sin ωωωε φφωωω nnnnmt +++++Γ= ⊥ . (104) 

The relevant rate gyro errors are collected and modeled in Figure 6.  Note that the 
constant bias error is omitted as it is easily filtered, and quantization error is omitted as 
inconsequential to the time scales of interest. 
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Figure 6.  Rate gyro model with error sources. 

 

The parameters of several rate-gyros are compared by Flenniken and Hamm.17 
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3.3 Other Effects 

Note that many of these errors parameters themselves are not static, and may depend on 
environmental conditions, or change over time. 

3.3.1 Temperature 

Temperature affects both accelerometers and gyros.  Optical gyros typically have their 
light-source wavelength affected by temperature, and the rate of change of temperature.  
This manifests itself as bias and scale factor variations with temperature.  Pavlath11 shows 
plots of both.  Woodman2 indicates sensor self-heating is also to be considered.  
Temperature effects are typically highly nonlinear, but effects can sometimes be 
compensated with measurements from an internal temper sensor.18  Kuritsky and 
Goldstein3 indicate that gyro bias thermal dependence can just be lumped in with other 
bias errors, and scale factor thermal dependence for RLGs is just a few PPM. 

3.3.2 Vibration 

Ideally, vibration is just another motion that needs to be measured by the IMU.  Note that 
for radar, the antenna vibration needs to be measured, so the IMU should be rigidly 
mounted to the antenna.   

Walchco and Mason19 state “Vibration in a strap-down system can cause many problems 
with the INS.”  Kuritsky and Goldstein3 indicate that vibration affects bias via sensor 
scale factor asymmetries.  They also discuss specific manifestations called “coning” and 
“sculling” errors.  Additionally, vibration frequency is very important.  Since the 
accelerometers and gyros are sampled, excessively high vibration frequencies may alias 
to lower frequencies. 

The usual treatment is to first mitigate any high-frequency resonances in the antenna 
assembly, and then to isolate the IMU from the vibration (e.g. shock mounting, etc.)  
Note that if isolation is required, then the entire antenna needs to be isolated.  In any case, 
the vibration environment for the IMU needs to be determined and assessed. 

3.3.3 Aging 

As with any electronic equipment, one might expect some performance degradation with 
time. 

3.3.4 Hysteresis 

Walchco and Mason19 describe hysteresis as the attribute of IMU parameters (especially 
biases) changing from one power-up to the next.  Manufacturers sometimes call this “bias 
repeatability.”  
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3.4 Aiding 

Determining the orientation and position of the IMU accelerometers and rate gyros within 
a desired coordinate frame is termed ‘alignment’ of the IMU.  But IMU’s will eventually 
drift away from this alignment with time, due to the aforementioned error sources.   

The alignment can often be maintained within some error bounds by monitoring other 
motion and attitude instruments, comparing their information with that of the IMU 
instruments, and adjusting IMU data accordingly.  The reference measurements thereby 
‘aid’ the IMU.  This process is called ‘aiding’. 

Generally, the aiding instruments provide their ‘truth’ information at a cost of limited 
measurement rates, or excessive noisiness, so that their aiding is accomplished mainly in 
a statistical sense.  Combining the aiding measurements to estimate IMU error 
components is generally done via a Kalman Filter (KF).  More properly, since nonlinear 
functions are employed, the correct structure is termed an ‘Extended’ Kalman Filter 
(EKF). 

A number of different aiding mechanisms have been employed in various systems.  
Several are briefly discussed.  Others no doubt exist.  This is not meant to be a 
comprehensive discussion of various aiding schemes, but rather just an acknowledgement 
that a variety of such schemes exist.  Their suitability for SAR motion measurement is 
also not addressed.  More comprehensive discussions can be found in the literature.  
Several are discussed in a chapter in a book by Siouris.20 

3.4.1 Global Positioning System (GPS) 

One of the more popular aiding schemes is GPS.  Books have been written about this 
topic.  Useful texts include Kaplan and Hegarty21, and one by Grewal, et al.22  In fact, 
this combination is so popular that they come as single instrument packages known as 
Embedded GPS/INS (EGI) units.  However, even with GPS, a number of options exist.  
These include, among others 

1. C/A code GPS 

2. P code GPS 

3. Differential GPS (DGPS) 

4. Carrier-Phase GPS 

One particular problem with GPS updates is that they come typically at one-second 
intervals, which is much less frequent than IMU data points.  The GPS aiding needs to be 
applied in a manner to not cause large jumps or discontinuities in the motion 
measurement error.  Recall that SAR autofocus works best on low-frequency phase 
(range) errors.  Fuxiang and Zheng23 describe aiding whereby GPS measurements are 
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directly compared to IMU calculations to subsequently calculate errors between the two, 
and allow correction of those errors.  Their implementation optimally requires GPS 
updates to not be applied during the SAR synthetic aperture to avoid large jumps in the 
error.  Alternatively, Kim, et al.1, discuss aiding with P-Code Carrier-Phase GPS data, 
and address this by a dual navigator arrangement that couples the GPS to the IMU data 
via a tracking filter.  In this manner, GPS updates can be applied during a synthetic 
aperture without problematic discontinuities. 

Multi-antenna GPS systems have been proposed to facilitate attitude-aiding. 

Other GPS-like systems exist.  For example, the Russian Republic operates GLONASS;  
the European Union operates Galileo;  India operates IRNSS and China operates BeiDou. 

3.4.2 Transfer Alignment from HAINS system  

Occasionally, a navigation-grade HAINS system already resides on the aircraft platform 
carrying the SAR system.  In this case, the possibility exists to aid the SAR’s indigenous 
IMU with the HAINS motion estimates.  This is referred to as a ‘Transfer Alignment’.  
This is the approach advocated by Kennedy.24,25 

3.4.3 Star Tracker  

Kuritsky and Goldstein3 discuss aiding with stellar navigation (sighting stars).  This is 
primarily for attitude aiding. 

3.4.4 Magnetometer 

Heading alignment can be aided by a magnetometer sensing the earth’s magnetic field. 

3.4.5 Radio Navigation Aids 

Position errors can be bounded by traditional navigation systems that include TACAN, 
LORAN, Omega, VOR, DME, and JTIDS RelNav. 

3.4.6 SAR Feedback 

The SAR system itself may be used to aid the navigation.  This would include clutter-
locking and clutter-tracking schemes.  Feedback of autofocus information has been 
postulated as a mechanism to estimate IMU bias errors. 

Sequence of contiguous spotlight SAR images in a stripmap have been used to estimate 
and correct IMU yaw angle errors.26,27 

Otherwise, the SAR system may in some cases be operated in special modes to measure 
specific motion parameters, such as velocity.28 
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3.4.7 Other Radar 

Secondary radar systems may be used for motion data augmentation, such as Doppler 
navigation systems.  This would include perhaps laser Doppler navigation. 

Terrain matching systems can help bound position errors.  This includes TERCOM 
systems. 

3.4.8 A Note About S-Turns 

As previously stated, an IMU is a collection of instruments that make six independent 
measurements; three translational motion elements (typically accelerometers), and three 
rotational motion elements (typically rate gyros).  Each of these six instruments has its 
own biases with independent noise and drifts, i.e. its own error.  Furthermore, there are 
the accumulated errors that also need to be corrected, that is, it is not sufficient to just 
stop further error growth, but the errors accumulated thus far also need to be corrected. 

Consequently there are at least twelve independent unknown errors that need to be 
corrected by an aiding scheme.  Any particular aiding scheme may not be sufficient to 
estimate and mitigate all of these errors independently.  To correct all the unknown 
independent errors, we need at least that many relevant independent measurements, 
enough to discern and make observable the individual error components.  Furthermore, 
since measurements are typically functions of errors in all dimensions, unless each error 
is made observable and identifiable, ambiguity exists for all others. 

For example, consider a typical single GPS aiding scheme that provides three dimensions 
of position information, but not attitude information.  We will simplify the subsequent 
analysis because our interest is to illustrate some points, not to provide detailed 
algorithmic design equations. 

Presume for the moment that there are no rotational errors, that is, the orientation of the 
IMU is known.  This allows GPS position measures to be related to specific IMU 
acceleration instruments.  With multiple GPS measurements, individual motion 
dimensions and characteristics become observable, including accelerations.  Linear 
motion errors (i.e. position, velocity, and acceleration) can be corrected, and 
accelerometer biases become apparent and can be compensated. 

Now consider accelerations in the presence of small rotational errors.  We return to the 
notation in Section 2, where the measured acceleration was related to instrument 
acceleration as 

( ) ( ) ( )ttt mmm aRa ′= . (105) 

This can be expanded to a dependence on true and error rotations and accelerations as 

( ) ( ) ( )( ) ( ) ( )( )ttttt ttm εε aaRRa ′+′+= . (106) 
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For expedience in this development, we will assume that the acceleration errors in the 
instrument frame are known to be (or adequately modeled as) zero, that is 

( ) 0a =′ tε . (107) 

Furthermore, we will presume that the radar frame is the same as the IMU coordinate 
frame.  This allows 

( ) IR =tt . (108) 

We will also assume that the rotational error is a constant, as if a significant accumulated 
error that changes very little more during the time period of interest.  This is notated as 

( ) ( )0εε RR =t . (109) 

Consequently, the IMU measured accelerations are then related to true accelerations as 

( ) ( )( ) ( )0m tt tε ′= +a I R a . (110) 

Expanding the ( )( )0εRI +  term yields the equation 
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where we have dropped the explicit references to time as an argument to the various 
factors and elements of the equation.  This is just to avoid clutter in the equations. 

Nevertheless, this equation indicates that a true acceleration is perturbed by instrument 
orientation errors for any measured acceleration.  It also suggests that if for some number 
of measured values ma  we can identify corresponding ‘truth’ values ta′  divined from an 
‘aiding’ source, then we might be able to identify the various components of the rotation 
matrix.  This is, in fact, the plan. 

To proceed, we shall presume for simplicity that these coordinate frames align with the 
North-East-Down (NED) frame, where 

positive x’ = north,  
positive y’ = east, 
positive z’ = down. (112) 

In our NED frame, consider straight and level flight.  No horizontal accelerations are 
present.  Only gravity is sensed, and we know it points down.  Consequently 
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Note that angular errors about the x’ and y’ axes are observable and measurable.  These 
typically correspond to combinations of ‘pitch’ and ‘roll’.  However, the rotational error 
about the z’ axis is not observable at all.  This typically corresponds to ‘yaw’, and is often 
referred to as ‘heading error’.  Heading error is the problem child of GPS aiding.  It 
seems to manifest itself mainly as an antenna pointing error.  We discuss this more later. 

Now consider a sequence of measurements where we define 

[ ]...321 mmmm aaaA = . (114) 

Furthermore, for each measured vector we have a ‘truth’ vector, which we derive from 
GPS measurements, and collect as 

[ ]...321 tttt aaaA ′′′=′ . (115) 

The equation relating the two collections of accelerations is 
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In general, the matrices mA  and tA′  are not square, consequently we need to employ the 
pseudo-inverse to calculate the rotation matrix 
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This places some special requirements on tA′ .  First, we need at least three measurement 
vectors.  Second, the measurement vectors need to be mathematically independent.  This 
implies that no number of measurements of a constant acceleration is suitable for 
determining the orientation error matrix.  We need at least three acceleration situations 
where the accelerations are different enough to provide mathematically independent 
conditions.  This is required for the pseudo-inverse to exist.  Third, to be independent, we 
need different non-zero horizontal accelerations in both the North and East directions for 
some of these measurements. 
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So, this means that we need a variety of accelerations in the horizontal plane, with 
variations in North and East, to make heading error observable.  This implies a 
maneuvering platform.  Since GPS measurements are themselves noisy, and using the 
pseudo-inverse calculates a least-mean-squared-error fit to the data, we would like many 
such measurements to help beat down the noise, i.e. uncertainty.  Since GPS 
measurements come at Hz rates, this implies that the maneuvering needs to be over a 
number of seconds, the more the better.  And finally, Since GPS measurements have 
limited precision relative to the IMU, we need fairly large horizontal accelerations and 
motions generated to also help overcome the noise in the GPS measurements.  For all 
these reasons, periodic sustained turns with substantial lateral accelerations are desired to 
mitigate heading errors in GPS-aided inertial navigation systems.  These turns may be 
part of platform course corrections, dog-bone flight paths, racetracks, or may be 
prescribed S-turns, or any other maneuver that generates many independent-acceleration 
GPS updates.  Anecdotal evidence suggests that with the IMU held rigid to the aircraft 
body, the IMU needs to see 1/3 -1/2 G minimum for up to 30-60 seconds.  

We also note that in an aiding scheme for an IMU, accelerometer errors and angular 
errors are all calculated simultaneously by the EKF, which seeks to simultaneously 
minimize the mean-squared-error influence of all IMU errors when compared to multiple 
GPS measurements. 

The natural question to ask is “How do we maintain heading alignment during straight 
and level flight?”  We leave this question with the simplistic answer “with an additional 
instrument of some sort that makes the heading error observable.”  One answer is an 
aiding scheme that uses SAR stripmaps themselves, as reported by Doerry26, and 
Marquette, et al.27 

As a final note, we address a point of occasional confusion.  The term ‘heading’ as 
applied in this analysis is not to be confused with the direction of travel of the radar.  
Rather, it is the orientation of the radar about the vertical axis, regardless of the direction 
of travel. 
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“Your present circumstances don't determine where you can go;  
they merely determine where you start.” 

 -- Nido Qubein 
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4  Expected Motion Measurement Error Behavior 
In this section we combine the results of the previous two sections, and develop a 
relationship between IMU instrument errors and the ultimate navigation error of the IMU 
subsystem. 

4.1 Navigator Position Error 

The question here is “How do IMU instrument errors affect navigator position error?” 

From Section 2 we recall that the net acceleration error was given by 

( ) ( ) ( ) ( ) ( )t tt t t t tε ε ε′ ′≈ +a R a R a . (118) 

where ( )tta′  includes gravity.  This is integrated to find velocity error and position error, 
that is 

( ) ( ) ( )0
0

εεε ττ vav += ∫
τ

dτ , and 

( ) ( ) ( )0
0

εεε ττ pvp += ∫
τ

dτ . (119) 

These results can be combined into  

( ) ( ) ( ) ( ) ( ) ( ) ( )00
000

εεεεε τττττττττ pvaRaRp ++′+′= ∫∫ ∫∫ ∫
ττ

τ

τ

τ dddddτ . (120) 

To simplify the following analysis, we will assume that at time 0=t  we have no velocity, 
position, or rotation errors.  That is 

( ) 0v =0ε , 
( ) 0p =0ε , and 
( ) 0R =0ε . (121) 

Furthermore, consistent with our assumption that all accelerometer and rate gyro 
instruments have equal performance, we will assume that expected error performance 
does not depend on specific instrument or system orientation.  Consequently we will 
assume the convenience of the IMU instruments oriented in the radar frame.  That is 

( ) IR =tt . (122) 



 - 50 -  

Combining these yields 

( ) ( ) ( ) ( )
0 0

t t

tt d d d dε ε εt t t t t t t′ ′= +∫ ∫ ∫ ∫p a R a . (123) 

We will also assume that accelerations are dominated by gravity.  That is 

( ) ( )tt gt aa ′≈′ . (124) 

Although we know the magnitude of this vector, we do not necessarily know its 
orientation in the radar frame.  So, for now we will leave the more generic expression 
( )tta′  in the equation, although we will make use of the approximation of this as a 

constant. 

Now consider a specific component of the position error, namely the component in the y 
direction of the radar frame.  This error component can be extracted and described as 

( ) ( ) ( ) ( )∫ ∫ ∫∫∫ ∫ 












−+= ′′′′′

t

ztxxtz

t

yy dddadaddatp
0

,,,,
0

,, ttttωttωttt εεεε . (125) 

This allows the expansion to 

( ) ( ) ( ) ( )∫ ∫ ∫∫ ∫ ∫∫ ∫ ′′′′′ −+=
t

ztx

t

xtz

t

yy dddadddaddatp
0

,,
0

,,
0

,, ttttωttttωttt εεεε .  

  (126) 

A tacit assumption here is that the angles, and angular rates are in terms of radians rather 
than degrees. 

From Section 3 we recall that the acceleration error and angular rate error in the IMU 
instruments are given by 

( ) 2,1,0,max sin aaanmt nnnaaa +++++Β= ⊥ ϕϕε ,  and 
 

( ) 2,1,0,max sin ωωωε φφωωω nnnnmt +++++Γ= ⊥ . (127) 

We add some instrument axis subscripts, and combine with the earlier result to yield 
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  (128) 

We note that the perpendicular components are calculated as 

2
,

2
,, txtzy aaa ′′⊥′ += ,  

2
,

2
,, tztyx ′′⊥′ += ωωω , and 

2
,

2
,, tyxz ′⊥′⊥′ += ωωω . (129) 

These quantities may be either positive or negative, but the sign is immaterial to our 
purposes.  We also recall that the models for 2,,ayn ′ , 2,,ωxn ′ , and 2,,ωzn ′  are themselves 
integrals of white noise. 

Our assumption of accelerations dominated by gravity constrains 

ga tx ≤′, , 

ga ty ≤′, , and 

ga tz ≤′, . (130) 

Furthermore, even more constraining, we limit 

gay ≤⊥′, . (131) 

While this development was specifically for the y-axis component ( )tpy ε, , a similar 

development is readily performed to provide an expression for ( )tpx ε,  and ( )tpz ε, . 

At this point we have related IMU instrument characteristics to position error.  The goal 
is to ultimately develop requirements or limitations for IMU instrument parameters based 
on allowable limits for position error.  This requires knowing the position error limits.  
Position error limits are calculated in Section 5. 
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4.2 Navigator Orientation Error 

The question here is “How do IMU instrument errors affect navigator orientation error?” 

The error in navigator orientation are the elements of the rotation matrix error ( )tεR .  
Recall from Section 2 that this is calculated as 
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As with accelerations, we will assume no initial errors, and the same initial rotation.  That 
is, we will assume 

( ) 0R =0ε , and 
( ) IR =0t . (133) 

This allows the simplification 
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Consequently, an individual instrument’s angular rate error causes growth with time in 
the angular error itself.  Our initial conditions have allowed associating a specific 
instrument angular rate with a particular angular displacement.  Specifically, from 
Section 2 , the angular displacement errors can be calculated as 
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( ) ( )∫ ′′ =∆
t

xx dt
0

,, ttωθ εε , 

( ) ( )∫ ′′ =∆
t

yy dt
0

,, ttωθ εε , and 

( ) ( )∫ ′′ =∆
t

zz dt
0

,, ttωθ εε . (135) 

From Section 3 we recall that an instrument’s angular rate error can be modeled as 

( ) 2,1,0,max sin ωωωε φφωωω nnnnmt +++++Γ= ⊥ . (136) 

Choosing one of the angular displacement error components, for example the z’ axis, we 
can compute the angular (orientation) error as 

( ) ( )( )∫ ′′′⊥′′′ +++++Γ=∆
t

zzznmztzz dnnnt
0

2,,1,,0,,,max,, sin tφφωωθ ωωωε . (137) 

As with acceleration, we also recall that the model for 2,,ωzn ′  is itself an integral of white 
noise.  In addition, we identify 

2
,

2
,, tyxz ′⊥′⊥′ += ωωω , (138) 

and note that the sign may be either positive or negative. 

At this point we have related IMU instrument characteristics to orientation error.  The 
goal is to ultimately develop requirements or limitations for IMU instrument parameters 
based on allowable limits for orientation error.  This requires knowing the orientation 
error limits.  Orientation error limits are calculated in Section 5. 
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“A good hockey player plays where the puck is.  
A great hockey player plays where the puck is going to be.” 

-- Wayne Gretzky 
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5 Radar Geometry 
In this section we examine the effects of motion measurement errors on a SAR image.   

The radar uses motion data in two principal manners 

1. Motion Compensation of the radar data, and 

2. Pointing of the radar antenna. 

The aspects of motion measurement used for each is illustrated in Figure 7. 
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Figure 7.  Motion information is used by the radar for two principal purposes, 1) antenna pointing, 
and 2) motion compensation of the radar data. 

 

 

5.1 Motion Compensation 

A SAR image is composed of pixels, where each pixel corresponds to a specific scene 
location, and the intensity of the pixel is a function of the echo energy from that scene 
location.  In particular, the optimal estimate of the echo energy is calculated via a 
matched filter, that is, the raw radar data filtered to that specific location in the minimum 
mean-squared error sense.  The matched filter necessarily compensates for the range to 
the target point and how it varies during the radar’s synthetic aperture, that is a collection 
of positions along the radar’s flight path.  An error in measured position corresponds to 
an error in the matched filter, which alters the echo energy estimate for that location away 
from optimum. 



 - 56 -  

5.1.1 Range Error 

The radar’s greatest sensitivity to position error is in the direction towards (or away from) 
the target location of interest, that is, a line-of-sight range error. 

Consequently, we now specifically examine the effects of a range error function on the 
output of a range-Doppler matched filter. 

Consider a radar transmitted signal of the form 

( ) ( ) ( )( )( )∑ −+−





 −

=
n

nn
n

T ttttfj
T

tttX fπ 02exπrect , (139) 

where 

t  = time,  
n  = pulse number, 22 NnN <≤− , 

nt  = reference time of the nth pulse,  
T = pulse width, 

0f  = nominal center frequency of the pulses, and 
( )τφ  = phase modulation function of the pulse. (140) 

We will assume that ( )τφ  is analytic over the pulse width.  This is reasonable for 
waveforms such as chirps. 

Neglecting attenuation, the received signal from a point target is identified as 

( ) ( )





 −= tr

c
tXtX sTR

2 , (141) 

where 

( ) ( )ttr ss r= , and 
( )tsr  = vector relating the true location of the radar from the target point. (142) 

The variation of ( )tsr  in both length and direction defines the synthetic aperture. 

The matched filter for the target point will be based on measured position of the radar 
with respect to the target point, consequently the filter function is 

( ) ( )





 −= tr

c
tXtX mTM

2 , (143) 

where 
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( ) ( )ttr mm r= , and 
( )tmr  = vector relating the measured location of the radar from the target point. 

 (144) 

The optimum matched filter output for that scene location is then identified as 

( ) ( )∫=
t

MRo dttXtXx * . (145) 

This can be expanded to 
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∑∫ . (146) 

If we make the reasonable assumption that the range error isn’t too big, that is 

( ) ( ) Ttrtr
c ms <<−
2

, (147) 

Then the matched filter output can be approximated by 
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. (148) 

Another reasonable approximation for this analysis is that the ranges do not vary 
significantly during any one single pulse.  While this is not adequate for high-
performance SAR image formation, it will suffice for the analysis at hand.  This allows 
the substitutions 
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( ) ( )nss tt rr → , and 
( ) ( )nmm tt rr → . (149) 

We also define 

0fc=λ  = the nominal wavelength of the radar. (150) 

The model for the matched filter output becomes 
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We now identify the range error as the difference between measured and true values 

( ) ( ) ( )nsnmn trtrtr −=ε . (152) 

This allows the matched filter output to become 
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At this point we make the Taylor series expansion 

( ) ( ) ( ) ( ) ( )nnnsnnsnnns tr
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  (154) 

This allows the matched filter output to be approximated as 
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We identify the integral as the operation of ‘range compression’.  The exponential outside 
of the integral is the Doppler term.   

For the range resolution of this signal to be determined by the modulation ( )τφ , then ( )τφ  
needs to have bandwidth substantially larger than that of the pulse itself (i.e. 1/T). This is 
generally the case with modern SAR systems. 

For a Linear FM (LFM) chirp waveform, we identify 

( ) 2
2

2 τγπτφ = , and 

( ) πγττφ 2=′ , (156) 

where 

γ  = the chirp rate in Hz/sec. (157) 

For this modulation, the matched filter output will be 
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A change of variable allows the simplified form 
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The integration is readily performed, and yields 
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However, we also identify 

rT
c r
γ

=
2

 = range resolution of the radar. (161) 

This allows the matched filter output to be expressed as 
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There are two mechanisms by which ( )ntrε  influences the matched filter output, and 
hence SAR image quality, 

1. by the phase modulation term ( )







ntrj ελ
π4εxπ , and 

2. by the amplitude, or migration, term 
( )










r

ntr
r
εsinc . 

For the matched filter to adequately ‘integrate’, each of these needs to be suitably small, 
or at least correctable to something suitably small, over the course of the synthetic 
aperture.  Indeed, for negligible error, or ( ) 0≈ntrε , we have 

TNxo ≈ . (163) 

Excessive errors ( )ntrε  during the pulse integration interval (synthetic aperture) will 
result in suboptimal matched filter performance.  The issue is really how ( )ntrε  varies 
during the course of the synthetic aperture. 

We have made the tacit assumption that phase error is proportional to ( )ntrε  alone.  The 
implication is that no other factors influence phase error, such as atmospheric effects 
along the path between radar and target scene.  This is not strictly true, as Dickey, et al.,29 
have shown that phase errors due to atmospheric effects are in fact quite common, and 
especially significant in long-range SAR images at shallow grazing angles.  In such 
situations, even perfect motion measurement is unable to provide sufficient information 
to adequately focus a SAR image. 

Furthermore, we need to be mindful that there is a difference between real range errors 
due to position inaccuracies, and apparent range errors due to radar measurements 
impacted by atmospheric effects.30  We will ignore these atmospheric effects henceforth. 
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5.1.2 Relating Range Error to Position Error 

The range error from the previous section can be related to vector quantities as 

( ) ( ) ( ) ( ) ( ) ( )nsnnsnsnmn ttttttr rrrrr −+=−= εε , (164) 

where the error vector is defined as 

( ) ( ) ( )nsnmn ttt rrr −=ε . (165) 

We can expand the range error to 

( ) ( ) ( ) ( ) ( ) ( )nsnnnsnsn ttttttr rrrrr −++= 22 2 εεε  . (166) 

A Taylor series expansion for small errors allows the approximation 

( ) ( ) ( )
( )
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rr
2

2
εε

ε +≈
 . (167) 

For a matched filter implementation, the range error vector is simply the position error 
vector, namely 

( ) ( )nn tt εε pr = . (168) 

Consequently, we identify the range error itself as 

( ) ( ) ( ) ( )
( )ns

n
nnsn t

t
tttr

r
p

pn
2

2
ε

εε +≈  , (169) 

where the unit vector in the range direction of ( )ns tr  is defined as 

( ) ( )
( )ns

ns
ns t

tt
r
rn = . (170) 

Some observations are worth noting. 

• Any position error in the direction of the target point translates directly into a 
range error, and ultimately a phase error.  Nice to know that the math backs an 
obvious behavior. 

• Less obvious, any position error in any direction at all translates via a square-law 
relationship to a range error.  That is, for example, a linear position error (say, an 
along-track constant velocity error) translates into a quadratic range error, and 
hence a quadratic phase error. 
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5.1.3 Synthetic Aperture Time 

Since range errors may accrue with time, an important question becomes “What is the 
time period for range errors to accrue?”  This is essentially the question “What is the 
pulse integration interval, or synthetic aperture time?” 

For broadside imaging, the synthetic aperture length is given by 

( )
a

sw
a

traL
r

λ
2

0
, =⊥ , (171) 

where 

0t  = the nominal time when the radar is at the center of the synthetic aperture, 

aρ  = the desired azimuth resolution of the SAR image, and 

wa  = Impulse Response (IPR) mainlobe broadening factor due to aperture  
          weighting.  (172) 

Typically for many SAR systems, 2.1≈wa .  More generally, the synthetic aperture 
length is given approximately by 

( )
sa

sw
a

traL
φr

λ
sin2

0≈ , (173) 

where 

sφ  = squint angle from radar platform heading, in the ground plane. (174) 

With the radar traveling at some nominal velocity, the synthetic aperture time is given 
approximately by 

( )
saa

sw

a

a
a v

tra
v
LT

φr
λ

sin2
0≈= , (175) 

where 

av  = nominal radar velocity in direction of synthetic aperture. (176) 

We note that the synthetic aperture time aT  is a strong function of each of wavelength, 
imaging geometry, desired resolution, and platform velocity.  Figure 8 plots aperture 
times versus velocity for several ranges, with 0.3 m resolution broadside imaging.  Figure 
9 plots aperture times versus velocity for several ranges, with 0.1 m resolution broadside 
imaging. 
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Some specific examples: 

1. For Ku-band, 10 km range, broadside imaging, 0.3 m resolution, and 50 m/s 
velocity, ≈aT 7.2 seconds. 

2. For Ku-band, 25 km range, 45 degree squint imaging, 0.1 m resolution, and 36 
m/s velocity, ≈aT 106 seconds. 

If position errors accrue with time, then shorter (in time) synthetic apertures will allow 
less position error changes during a synthetic aperture.  This implies that radars on faster 
vehicles will have lesser problems with drifting IMU errors. 

Some published typical aircraft cruising velocities are given in the following table. 

 

Table 1.  Typical aircraft cruise velocities. 

Aircraft Typical Cruise 

Lockheed F-16A Falcon 258 m/s 

Lockheed P-3 Orion 170 m/s 

Beechcraft King Air 149 m/s 

De Havilland DHC-6 Twin Otter 74 m/s 

General Atomics MQ-9 Reaper 87 m/s 

General Atomics MQ-1 Predator A 36 m/s 

AAI RQ-7 Shadow 200 31 m/s (loiter) 
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Figure 8.  Aperture time versus velocity for broadside imaging at select ranges with 0.3 m resolution. 
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Figure 9.  Aperture time versus velocity for broadside imaging at select ranges with 0.1 m resolution. 
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5.1.4 Limits with Autofocus 

We now examine how increasing levels of range error ( )ntrε  influence SAR image 
quality.  The key issue with radar geometry is “How much range error is allowable?” 

The principal measure of image quality affected by range errors is the IPR.  The IPR is 
discussed in some detail in a prior report.31 

Most SAR systems deal with the effects of residual motion errors via a blind 
deconvolution operation on the image.  This is generally referred to as ‘Autofocus’.  
Various autofocus schemes and strategies are able to cope with differing amounts of data 
infidelity.  Consequently, the required ‘goodness’ of the data, and hence the goodness of 
the motion measurements on which the image is formed, depends strongly on whether 
autofocus is employed, and what capabilities the particular autofocus algorithm 
possesses. 

5.1.4.1 No Autofocus 

In the absence of any autofocus operations, the burden is solely on the navigation system 
to provide adequately accurate and precise motion measurements.  That is, the range error 
( )ntrε  needs to have negligible consequence on both the migration error term and the 

phase error term, particularly with respect to focusing the SAR image.  To facilitate the 
following discussion we define several components to the range error, namely 

( )0trr e≈e  = a representative constant component in ( )ntrε , 

( )0tr
dt
dr ee ≈  = the linear range error rate over the synthetic aperture, 

( )02

2
tr

dt
dr ee ≈  = the quadratic range error factor over the synthetic aperture,  

( )03

3
tr

dt
dr ee ≈  = the cubic range error factor over the synthetic aperture, 

srε  = a sinusoidal range error factor over the synthetic aperture, and 
rrε  = a random range error factor over the synthetic aperture. (177) 

Some of these components are more troublesome than others. 

Small Constant Range Error 

Consider first a small constant range error, where 

( ) εε rtr n = . (178) 

This would seem to cause the matched filter output to be expressed as 
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This is an expression for the effects of a range error on the exact pixel corresponding to 
‘truth’.  In general, small ‘constant’ range errors are reasonably well tolerated.  They will 
generally just shift the SAR image in range by a small amount, which may even be 
several pixels.  To be sure, the constant range error will result in target location error in 
the range dimension.  The range location error will be 

εε rsr =, . (180) 

The matched filter output at the displaced range can then be described as 
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This is expanded to 
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Note that the consequence of a constant component in the range error is to shift the range 
at which the IPR peaks, and provide a constant phase error, otherwise the shape of the 
IPR magnitude remains unchanged.  That is, the constant component of the range error 
has no effect on focusing of the SAR image. 

Small Linear Range Error 

Consider first a small linear range error, where 

( ) nen trtr =e . (183) 

This would seem to cause the matched filter output at the ‘truth’ location to be expressed 
as 

∑ 















≈

n
ne

r

ne
o trjtrTx 



λ
π

r
4exπsinc . (184) 

Neglecting the migration term for the moment, a linear range variation over the synthetic 
aperture will cause an azimuthal target location shift of 

( ) ( )
( ) ae
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sa

s
a TraTr

L
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, λ
r

φe == . (185) 
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The matched filter output at the displaced azimuth location can then be described as 
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Note that the consequence of a linear component in the range error is to shift the azimuth 
location at which the IPR peaks, otherwise the shape of the IPR magnitude remains 
unchanged.  That is, the linear component of the range error has no effect on focusing of 
the SAR image. 

Additionally, the range migration at the displaced azimuth location is also zero, that is, 
the argument of the sinc() function goes to zero when ( ) nen trtr =e .  Effectively, the entire 
synthetic aperture is pointed to a different azimuth location, but focusing in unimpaired.  
A constrained linear range error, perhaps due to aiding, is discussed in Appendix E. 

Nonlinear Range Errors 

While constant and linear range errors might displace the IPR, they do not significantly 
alter its shape.  However, higher order range errors will degrade the shape of the IPR, via 
both the migration term and the phase term.  Consequently, we identify the nonconstant, 
nonlinear phase error terms as 

( )( ) ( )detrend n n e nr t r t r t reee  = − − . (187) 

We define specific nonlinear components of the phase error as 

2

22






= aeq Trr


e  = the peak quadratic range error over the synthetic aperture,  

3

26






= aec Trr


e  = the peak cubic range error over the synthetic aperture, 

srε  = the peak sinusoidal range error over the synthetic aperture, and 
rrε  = the standard deviation of the random range error over the synthetic aperture.  

  (188) 

We now examine limitations on these nonlinear terms. 

Migration Error 

The essential behavior of the migration term that causes SAR image degradation is 
contained in the deviation due to nonlinear range error.  For the migration term, the 
requirement for a high-fidelity SAR image is then 
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sinc 1n
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. (189) 

We may transmogrify the requirement to 

( )( )( ) ( )( )( )max detrend min detrendn n rr t r tee  r− < . (190) 

Stated simply, the residual range migration needs to be less than the range resolution over 
the entire synthetic aperture. 

Phase Error 

In general, phase error corresponds to range error via 

( ) ( )nen trt 





=
λ
πφe

4 . (191) 

Nonlinear range errors correspond to nonlinear phase errors.  The effects of nonlinear 
phase errors have been addressed in the literature.  See Appendix D for details of these 
phase error effects.   

Corresponding peak phase errors to their range error counterparts are 

( ) qq rεε λπφ 4=  = the peak quadratic phase error over the synthetic aperture,  

( ) cc rεε λπφ 4=  = the peak cubic phase error over the synthetic aperture, 

( ) ss rεε λπφ 4=  = the peak sinusoidal phase error over the synthetic aperture, and  

( ) rr rεε λπφ 4=  = the standard deviation of the random phase error.   (192) 

While a ‘good’ IPR is somewhat subjective, the following criteria are typical for SAR, 

Quadratic Phase Error less than 90 degrees (peak), 
Cubic Phase Error less than 30 degrees (peak), 

Sinusoidal Phase Error less than 1 degree (peak), and 
Random phase error less than 1 degree standard deviation. 

This implies range error components over the synthetic aperture at Ku-band as follows, 

Quadratic Range Error less than 0.0023 m (peak), 

Cubic Range Error less than 0.00075 m (peak), 
Sinusoidal Range Error less than 0.000025 m (peak), and 

Random Range Error less than 0.000025 m (1-sigma). 
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5.1.4.2 Conventional Autofocus 

Autofocus is typically the blind deconvolution of phase errors from a SAR image.  
Algorithms to accomplish this are quite varied, with considerable differences in 
capabilities as well.  A popular algorithm with generally good performance is the Phase 
Gradient Autofocus (PGA) algorithm.32  As customarily implemented, PGA is able to 
correct a wide variety of phase error characteristics, limited only by the following 
constraints: 

• Phase errors are confined to the range resolution, that is, no residual migration 
errors exist. 

• Phase errors tend to be low frequency in nature, that is, the dominant effects 
exhibited are relatively near the IPR mainlobe. 

Migration Error 

Since PGA, and indeed most autofocus algorithms, operates only on range-compressed 
data, the constraints of the previous section still apply, namely 

( )( )( ) ( )( )( )max detrend min detrendn n rr t r tee  r− < . (193) 

Stated simply, the residual range migration needs to still be less than the range resolution. 

Phase Error 

PGA, as well as most other algorithms, mask the IPR in azimuth to some degree during 
the course of operation.  This has the effect of limiting the corrective action of autofocus 
to phase errors that are highly correlated from one sample to the next, that is, errors with 
primarily low-frequency content, say some fraction of the entire scene being imaged. 

Consequently, we can expect autofocus to correct quadratic, cubic, low-frequency 
sinusoidal, and low-frequency random phase errors.  High-frequency sinusoidal phase 
errors, and high-frequency random phase errors, will generally not be adequately 
mitigated. 

With autofocus, we retain the following typical criteria for SAR, 

Sinusoidal Phase Error less than 1 degree (peak), and 

Random phase error less than 1 degree standard deviation. 

This implies range error components over the synthetic aperture at Ku-band as follows, 

Sinusoidal Range Error less than 0.000025 m (peak), and 

Random Range Error less than 0.000025 m (1-sigma). 
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5.1.4.3 Autofocus with Subaperture Processing 

Subaperture processing typically divides the Doppler processing into coarse azimuth 
processing and fine azimuth processing.33  Autofocus is typically only applied to fine 
azimuth processing, and then in a conventional manner.   

Migration Error 

Since conventional autofocus is still used in fine azimuth processing, and thereby only 
operates on range-compressed data, the constraints of the previous section still apply, 
namely 

( )( )( ) ( )( )( )max detrend min detrendn n rr t r tee  r− < . (194) 

Restated simply, the residual range migration needs to still be less than the range 
resolution. 

Phase Error 

The application of autofocus only during fine azimuth processing requires that phase 
errors be adequately low during the subaperture period without benefit of autofocus 
during the subaperture period. 

We define 

subapT  = the time period of a subaperture, (195) 

and note that the subaperture period is usually a small fraction of the total aperture, 

asubap TT << . (196) 

Consequently, peak phase errors are constrained during the subaperture period.  Phase 
errors during a subaperture period are related to range error components by 

( )( ) esubap
q rT 222 λpφe =  = the peak quadratic phase error over the subaperture,  

( )( ) esubap
c rT 3232 λpφe =  = the peak cubic phase error over the subaperture, 

( ) ss rεε λπφ 4=  = the peak sinusoidal phase error over the subaperture, and  

( ) rr rεε λπφ 4=  = the standard deviation of the random phase error.   (197) 

Additionally, for subaperture image formation algorithms, fine resolution processing is 
meant to resolve coarse-resolution subimages, generally in azimuth.  This implies that the 
IPR mask that a typical fine-resolution autofocus applies during its execution is smaller 
than in the case where subapertures are not used.  This further implies that a smaller 
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bandwidth of phase errors is correctable when subapertures are employed.  The disparity 
is generally greater as subaperture lengths increase. 

Since subapertures generally overlap significantly, by say 60% or so, the ratio of 
correctable bandwidths for subaperture techniques versus non-subaperture techniques is 
about  

( )e_lengthsubapertur5.2 . (198) 

For example, for a subaperture length of 64 samples, this corresponds to a reduction of 
correctable phase error bandwidth to about 4% of the non-subaperture capabilities.  This, 
of course, assumes equal fractional IPR masks. 

Of course, if the autofocus operation is applied prior to any subaperture processing, then 
the limits revert to that for conventional autofocus. 

5.1.4.4 Migration Autofocus 

At very fine range resolutions, the constraint on residual range migration error often 
becomes the limiting performance parameter.  Consequently, an autofocus algorithm has 
been developed that corrects for some degree of residual range migration.34,35  Kirk, et 
al.36, describe a “Signal Based Motion Compensation” scheme to also correct radar 
imagery for excessive motion errors, beyond the mitigation ability of conventional 
autofocus. 

An underlying assumption for this algorithm is that the migration error is a fairly smooth 
function with some limitations on its slope.  This implies a presumption generally of 
predominantly low-frequency content of the range error. 

After migration error correction, a more conventional autofocus operation can be applied, 
and typically is applied, with its attendant limitations. 

The bottom line is that relatively low-frequency migration errors as well as relatively 
low-frequency phase errors can be corrected with this somewhat more exotic autofocus 
algorithm. 

5.1.4.5 Inverse SAR Techniques 

Inverse-SAR (ISAR) presumes a target’s motion is unknown to the radar, although the 
nature of the target (e.g. maritime, land-based, etc.) can often be used to advantage to 
constrain the problem.  Nevertheless, the target’s unknown motion adds to the migration 
and phase errors of the target’s echo data, and needs to be compensated to adequately 
image the target.  Complicating this, the general orientation of the synthetic aperture for 
ISAR is even often unknown.37,38 

In any case, this is very difficult compared to more conventional SAR, and although 
operational ISAR systems exist, especially for maritime applications, they virtually all 
suffer resolution and fidelity limitations compared to high-performance SAR systems. 
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5.2 Pointing Accuracy and Location Error 

There are two issues with antenna pointing.  The first is providing a proper and 
predictable illumination to the scene being imaged.  The second is with direction of 
arrival measurements, such as with multi-phase center Interferometric SAR systems. 

5.2.1 Antenna Beam Illumination 

An antenna pattern will impart an intensity modulation of the SAR image.  This is most 
noticeable in azimuth, usually because the azimuth beam pattern is often narrower than 
the elevation beam pattern, and small grazing angles elongate the antenna footprint in 
range.  In the range dimension, echo energy exhibits a loss due to range variation in 
addition to the elevation antenna pattern.  Although large range swaths may indeed 
exhibit effects of an elevation pointing error, most SAR systems will exhibit effects more 
likely, and more readily in the azimuth direction.  We will confine the analysis in this 
section to the azimuth case. 

Most high-performance SAR systems are designed to compensate the antenna beam 
pattern in azimuth (and range).  Consequently, the intensity modulation as a function of 
azimuth location in the image is not apparent in a properly functioning SAR (i.e. with no 
pointing error). 

However, if a pointing error exists, then the beam compensation that assumes correct 
pointing will in fact misapply its correction, thereby altering, but not eliminating the 
intensity modulation across the image. 

Most antennas have a strong quadratic component in their beam pattern in the 
neighborhood of their mainlobe peak.  Consider a simple model for an antenna beam 
mainlobe two-way field pattern as a quadratic of the form 

( ) ( )2max 1 2 ,0idealy x x= − . (199) 

This is also the one-way beam power pattern.  This antenna pattern obviously has 
nominal half-power one-way beamwidth of one.  That is, ( ) 5.05.0 =±y .  The two-way 

power pattern would be ( )2xyideal . 

Now suppose that there is an unknown pointing error εx .  The actual antenna pattern is 
then 

( ) ( )( )2max 1 2 ,0actualy x x xε= − − . (200) 

We will henceforth assume that the SAR image is limited to the nonzero region of the 
antenna beam pattern. 
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Antenna beam pattern compensation assumes that we have the ideal pattern, and will 
compensate the illumination accordingly.  Consequently, the net illumination in the SAR 
image is given by 

( ) ( )
2

2

21
21

x
xxxyimage

−

−−
= e . (201) 

Notice that when the error is zero, the illumination in the image is constant, as desired.  A 
series expansion of this yields 

( ) ( ) ...8484421 423222 +−+−+−≈ xxxxxxxxxxyimage eeeee  (202) 

From this we observe a strong linear component.  This implies that the image itself, after 
the correction corresponding to an ideal pointing has been applied, will exhibit a strong 
linear illumination gradient increasing in the direction of the actual pointing, and that the 
gradient will be proportional to the pointing error.  In spotlight SAR images this 
manifests as a superimposed intensity gradient across the SAR image.  In a stripmap SAR 
image composed of contiguous spotlight images, this manifests as gradients in the 
individual patches with noticeable seams where the patches abut.   

Equivalently, just because we don’t see a peak in the illumination profile doesn’t mean 
that the beam is centered outside the bounds of the image itself.  That is, not appreciating 
the effects of antenna beam correction might lead us to conclude the error is bigger than it 
actually is. 

For example, consider an error of ¼ beamwidth.  The actual beam pattern and the ideal 
beam pattern are illustrated in Figure 10.  Correcting the actual beam pattern with the 
ideal beam pattern yields the net magnitude illumination profile given in Figure 11. 

Now suppose that our SAR image is constrained to only the middle 2/3 of the desired 
(ideal) antenna pattern, that is, between the vertical dotted lines.  In this case we would 
see nearly a linear net illumination gradient across the image that varies by 9.8 dB from 
one edge to the other.  This would be extremely noticeable and rather annoying in a 
mosaicked SAR stripmap composite image. 

More generally, the image illumination variation can be plotted versus the antenna 
pointing error, and is done so in Figure 12.  This plot shows that a 1/10 beamwidth error 
will yield a 3 dB illumination variation, and a 0.03 beamwidth error will yield a 0.9 dB 
illumination variation for the central 2/3 of the antenna beam.   

Note that 0.03 beamwidths of a 3.2 degree beam corresponds to approximately 0.1 
degrees of pointing error. 

Anecdotal evidence suggests that a heading error of 1/30 of the antenna beamwidth is 
approximately the threshold for patches that occupy a large portion of the beamwidth. 
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Figure 10.  Example ideal (presumed) beam pattern and actual beam pattern with pointing error. 
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Figure 11.  Illumination pattern in image for pointing error in Figure 10, normalized to the center of 
the image. 
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Figure 12.  Illumination variation across central 2/3 of the beam pattern as a function of antenna 
pointing error. 

This analysis has presumed that illumination correction applied was determined assuming 
no pointing error.  A mitigation scheme for an unknown pointing error illumination might 
be to use data-driven techniques to measure the illumination function and correct for it as 
measured.39,26,27  

5.2.2 Direction of Arrival Measurements 

In some cases, SAR systems are required to provide Direction of Arrival (DOA) 
information based on interferometry measurements from multiple phase centers, or 
multiple antenna beams.  Such systems include topographic mapping Interferometric 
SAR (IFSAR, or InSAR) systems, and clutter cancelling GMTI systems with algorithms 
that include Along-Track Interferometry (ATI), Displaced Phase Center Antenna 
(DPCA), and Space-Time Adaptive Processing (STAP). 

Neglecting data-driven adaptive techniques, the fundamental goal is to steer a null 
towards a desired location.  The ultimate location accuracy for the actual null placement 
is dependent on both the accuracy and precision with which the desired null direction is 
known, as well as the location accuracy of the radar position itself.  For example, the 
right direction from the wrong spot will place the null in a wrong place.  Nevertheless, we 
will hereafter assume that uncertainty in null steering is dominated by the accuracy of the 
direction information, that is, the ability to point the null in a specific direction.  The null 
is steered via the antenna beam-steering mechanism, which depends on the fidelity of the 
radar antenna orientation information.  Consequently, the null pointing accuracy is 
limited to the attitude knowledge accuracy of the motion measurement information. 
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We identify the azimuth-direction location error due to null steering as 

( ) εε θ ,0, azsaz trs = , (203) 

where 

εθ ,az  = the azimuth-direction pointing accuracy. (204) 

Likewise, we identify the elevation-direction location error due to null steering as 

( ) εε θ ,0, εlsεl trs = , (205) 

where 

εθ ,εl  = the elevation-direction pointing accuracy. (206) 

For example, if we require a worst-case 3 meter location accuracy at 10 km range, then 
pointing accuracy needs to be within 0.0172 degrees.  This of course assumes perfect 
radar position information as well as perfect radar calibration. 

As a final note we do not want to forget that the fields generated and received by the 
antenna will be affected by the antenna’s environment.  For example, any of the 
following will affect the accuracy of direction of arrival measurements. 

• multipath and diffractive effects of structures in the vicinity of the radar,40 

• refractive properties of radomes, including the radome shape,41 and 

• refractive properties of the atmosphere.42,43 
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Figure 13.  SAR image using conventional autofocus when range errors exceed the range resolution.  
Note the ‘dumbbell’ response of the corner reflectors. 

 

Figure 14.  SAR image of Figure 13 when a migration correction autofocus was employed. 
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“Even though you are on the right track - you will get run over if you just sit there.” 
-- Will Rogers 
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6 So… How good does the IMU need to be? 
In this section, we relate the navigator performance in Section 4 to the allowable radar 
position error in the previous section.  This is a rather difficult task in that a number of 
options exist in both of these sections.  Consequently we will make some assumptions to 
bound the problem.  These include 

1. We will assume that the IMU is un-aided during the synthetic aperture.  To do 
otherwise requires knowledge of the aiding scheme and performance of the EKF.  
To avoid making this analysis implementation dependent, we make this somewhat 
pessimistic assumption.   

2. We will assume that the IMU is perfectly aligned (without error) at the beginning 
of the synthetic aperture.  This includes both position and orientation of the IMU.  
This is a somewhat optimistic assumption. 

3. We will assume that navigator position corresponds directly to radar antenna 
phase center location.  This neglects any influence of lever arms and any 
additional errors that might be encountered if this weren’t so.  We note that the 
location of an antenna’s phase center is not always obvious, and generally also 
assumes a number of simplifications.44 

4. We will assume that range errors are directly proportional to phase errors with 
known constant of proportionality.  This implies that there are no atmospheric 
effects that would cause phase perturbations in addition to those of the mechanical 
motion itself. 

5. We will assume that the range errors are dominated by nonlinear errors.  We 
justify this by noting that the range errors are driven mainly by multiply 
integrated noise and biases. 

6. We will assume that a Conventional Autofocus is used by the SAR.  While better 
(more comprehensive) autofocus schemes exist, this level of performance is, as its 
descriptor implies, ‘conventional’. 

7. We will assume that the SAR antenna is a single phase center.  Furthermore, 
pointing requirements are for illumination purposes only, and direction-of-arrival 
measurements with multiple antenna phase centers will not be made. 
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6.1 Navigator Position Error and Focus Limits 

From the previous section we identified that a position error generates a range error, 
which in turn becomes a timing error that generates a phase error in addition to 
contributing excessive residual migration.  The range error was calculated as 

( ) ( ) ( ) ( )
( )ns

n
nnsn t

t
tttr

r
p

pn
2

2
ε

εε +≈  . (207) 

We will simplify this somewhat further and use only the line-of-sight component.  That 
is, we will simplify this to 

( ) ( ) ( )nnsn tttr εε pn ≈ . (208) 

From Section 4 we identified the y-axis position error model as 
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If we align the y-axis with the line-of-sight vector to the target scene reference point, then 
we can approximate the range error at the end of a synthetic aperture, at time aT , with 

( )

( )( )

( )

( )















































+++

++Γ
−















+++

++Γ
+

+++++Β

=

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

′′′

⊥′′
′

′′′

⊥′′
′

′′′⊥′′

a

a

a

T

zzz

nmztz
tx

T

xxx

nmxtx
tz

T

ayayaynmyty

a

ddd
nnn

a

ddd
nnn

a

ddnnnaa

Tr

0 2,,1,,0,,

,max,
,

0 2,,1,,0,,

,max,
,

0
2,,1,,0,,,max,

sin

sin

sin

ttt
φφωω

ttt
φφωω

ttϕϕ

ωωω

ωωω
ε . 

  (210) 



 - 81 -  

Conventional autofocus requires that any residual uncompensated range migration be 
limited to less than the range resolution, namely such that 

( ) ( ) rnn trtr rεε <− minmax . (211) 

In addition, sinusoidal phase errors need to be less than 1 degree (peak), and random 
phase errors need to be less than about 1 deg (RMS).  The nature of the IMU errors 
suggests that instrument imperfections are more about drifting, alignments, and scale 
factors, which are then substantially low-pass filtered by the multiple integration stages. 

Since our presumption is that we have perfect alignment at the beginning of the synthetic 
aperture, and errors grow from there, our motion measurement error requirement 
becomes 

( ) raTr rε < . (212) 

There are two approaches available to us for relating IMU errors to the range error limit. 

1. The first approach is to place a requirement on each and every component of the 
range error ( )aTrε .  Such an approach might be to apply the maximum allowable 
error limit rr  to each and every component of ( )aTrε .  That is, we will require 
each component of ( )aTrε  to be less than the range resolution rr .  While an 
apportioned error budget approach might seem more prudent, the question arises 
as to what the apportionment should be.  It is likely that some IMU parameters 
will be more significant than others, and there is no guarantee that the order of 
significance won’t change with time aT . 

2. The second approach is to begin with a particular IMU’s parameter set, and 
calculate the bound on ( )aTrε .  This is then compared to rr  to decide if the 
particular IMU is an acceptable candidate for the SAR system design. 

Both approaches have merit.  The first approach can be used to down-select the set of 
candidate IMUs, and the second approach can be used to perhaps down-select even 
further. 

We will now examine the various components of ( )aTrε  in more detail, and calculate 
limits on them consistent with the first approach.  To complete the geometry definitions 
for the following analysis, we will define the axes at the beginning of the synthetic 
aperture as follows 

x’-axis = horizontal and orthogonal to the y’-axis  

y’-axis = the line-of-sight direction to the target scene reference point 

z’-axis = orthogonal to the y’-axis in a vertical plane 



 - 82 -  

For a broadside SAR imaging system, the radar is traveling in the positive x’ direction.  
This makes the x’-axis in this case the roll axis.  Additionally, for shallow grazing angles, 
the y’-axis is nearly the pitch axis, and the z’-axis is nearly the yaw axis.  A right-hand 
coordinate system is presumed. 

6.1.1 Accelerometer Parameters 

Here we are interested in the influence of accelerometer instrument parameters on the 
final range error.  We define this particular collection of errors as 
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This can of course be expanded to 
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The individual terms in the square brackets are now examined in turn. 

6.1.1.1 Scale Factor Errors 

We define the component due to scale factor errors as 

( ) ∫ ∫ Β= ′

aT

tyaa ddaTr
0

max,1, ttε . (215) 

This is evaluated as 
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( )
2

2
max,1,

a
tyaa

TaTr Β= ′ε . (216) 

Recall that the acceleration is presumed to be a constant, and dominated by gravity.  
While SAR does not normally operate looking straight down, so that tya ,′  is not 

identically equal to gravity, SAR may nevertheless look at some pretty steep depression 
angles.  For example, at a 60 degree depression angle, the line of sight acceleration 
component due to gravity will be about 0.87g.  This is close enough to 1 g that we allow 
the approximation 

( )
2

2
max1,

a
aa

TgTr Β≈ε . (217) 

Consequently, the requirement on scale factor error becomes 

2max 2.0
a

r
T
r

<Β . (218) 

This value would need to be multiplied by 610  if reported in PPM.  In addition, for most 
long-range SAR systems, depression angles will be relatively shallow, meaning that 
gravity will couple less to the line-of-sight direction in these cases.  This suggests that for 
long-range airborne systems we are likely to tolerate a scale factor error somewhat larger 
than the limit calculated above, say by an order of magnitude when depression angles are 
in the single-digit degrees. 

Finally, we note that the scale factor error, and the performance limits SAR requires, are 
over the range of accelerations that are expected for the radar.  IMUs are often specified 
over many g of operating range.  It is not clear that the data sheet scale factors apply to 
the relatively benign accelerations expected for most SAR systems. 

6.1.1.2 Misalignment and Nonorthogonality Errors 

We define the range error component due to misalignment and nonorthogonality errors as 

( ) ( )∫ ∫ += ⊥′

aT

nmyaa ddaTr
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,2, sin ττϕϕε . (219) 

Since misalignment and nonorthogonality errors are constant, and we have presumed 
⊥′,ya   constant as well, the double integral evaluates to 
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At shallow grazing angles, the acceleration component is approximately gravity, namely, 

gay ≈⊥′, . (221) 

Consequently,  

( ) ( )
2

sin
2

2,
a

nmaa
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The requirement for the misalignment and nonorthogonality errors becomes 

( ) 22.0sin
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r
nm

T
rϕϕ <+ . (223) 

6.1.1.3 White Noise Errors (Velocity Random Walk) 

We define the range error component due to bias white noise as 
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aT

ayaa ddnTr
0

0,,3, ττε . (224) 

Recall that 0,,ayn ′  is a random process with Power Spectral Density given by 

( ) ( ) HzgNfSN
22 µ=  . (225) 

Accounting for unit conversions (µg to m/s2), the expected variance after a double 
integration from Appendix B is 
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This is a statistical measure that indicates the probability of the range error component 
falling within some value.  We choose the seemingly reasonable criteria that two standard 
deviations should fall within the range error limit.  Consequently 

ra rσ <32 . (227) 

This implies the constraint 
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6.1.1.4 Bias Instability Errors 

We define the component due to bias instability as 
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Recall that 1,,ayn ′  is a random process with Power Spectral Density given by 
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Accounting for unit conversions (µg to m/s2), the expected variance after a double 
integration from Appendix C is 
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As before we choose the seemingly reasonable criteria that two standard deviations 
should fall within the range error limit.  Consequently 

ra rσ <42 . (232) 

This implies the constraint 
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6.1.1.5 Acceleration Random Walk Errors 

We define the component due to bias random walk as 
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Recall that 2,,ayn ′  is a random process with Power Spectral Density given by 
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However, this error can itself be modeled as an integration of white noise with Power 
Spectral Density of 2K .  Consequently, ( )aa Tr 5,ε  is in fact a triple integration of white 
noise. 

Accounting for unit conversions (µg to m/s2), the expected variance after a triple 
integration of the white noise from Appendix B is 
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As before we choose the seemingly reasonable criteria that two standard deviations 
should fall within the range error limit.  Consequently 

ra rσ <52 . (237) 

This implies the constraint 
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6.1.2 Rate Gyro Parameters 

Here we are interested in the influence of rate gyro instrument parameters on the final 
range error.  We define this particular collection of errors as 
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Consistent with earlier assumptions, we shall assume that gravity is the dominant 
acceleration, and we may simplify with 

ga tz ≈′, , and 
0, ≈′ txa . (240) 

This allows us to expand this range error component to 
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The individual terms in the square brackets are now examined in turn. 

6.1.2.1 Scale Factor Errors 

We define the component due to scale factor errors as 
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If  tx ,′ω  were a constant, then this would be evaluated as 

( )
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and the requirement on scale factor error would become 
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However, it seems unreasonable to believe that tx ,′ω  is a constant over the course of the 
synthetic aperture.  If we assume as in the examples of Section 3 that a roll and recovery 
is executed at the beginning of the synthetic aperture, then this implies that 
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xdtx dt ,

0

0
, 2 θω ∆≈∫

+

′ , (245) 

where  

xd ,θ∆  = the accumulated angular roll displacement in one direction in radians.  
  (246) 

Consequently, we can calculate a bound on the accumulated range error as  

( ) 2
,max1, axda TgTr θωε ∆Γ= . (247) 

Clearly, the influence of angular rate scale factors depends heavily on the nature of the 
angular velocity measured.  The more that the aircraft rolls back and forth during the 
synthetic aperture, the greater the contribution of scale factor errors.  It is expected that 
even benign flight conditions will exhibit some angular displacements.  The question 
becomes “What is reasonable to presume?”  To move the analysis forward, we will make 
the presumption of a single roll and recovery of one radian each at the beginning of the 
synthetic aperture.  This allows 

1, ≈∆ xdθ    radian. (248) 

Consequently,  

( ) 2
max1, aa TgTr Γ=ωε . (249) 

Consequently, the requirement on scale factor error becomes 

2max 1.0
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r
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<Γ . (250) 

This value would need to be multiplied by 610  if reported in PPM.   

Note that for a benign flight path with minimal roll motion, this limit might be easily be 
argued as very squishy. 

6.1.2.2 Misalignment and Nonorthogonality Errors 

We define the range error component due to misalignment and nonorthogonality errors as 
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As with acceleration, we shall assume misalignment and nonorthogonality errors are 
constant. 

Note that for a broadside SAR geometry, ⊥′,xω  is some combination of pitch angle and 
yaw angle.  While we would expect pitch angle accumulations to be rather small, we can 
certainly reasonably envision a yaw angle change during the synthetic aperture, as when a 
heading change is undertaken. 

If we assume as in the examples of Section 3 that a heading change is executed at the 
beginning of the synthetic aperture, then this implies that 

⊥

+

⊥′ ∆≈∫ ,,

0

0
, xdx dt θω , (252) 

where  

≈∆ ⊥,,xdθ   the accumulated heading displacement in radians. (253) 

Consequently, the range error becomes 
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xdnma
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As before, we will assume that the heading change is limited to 1 radian.  The 
requirement for the misalignment and nonorthogonality errors becomes 

( ) 22.0sin
a

r
nm

T
r

φφ <+ . (255) 

6.1.2.3 White Noise Errors (Angle Random Walk) 

We define the range error component due to bias white noise as 

( ) ∫ ∫ ∫ ′=
aT

xa dddngTr
0

0,,3, τττωωε . (256) 

Recall that 0,,ωyn ′  is a random process with Power Spectral Density given by 

( ) ( ) HzhNfSN
223600 °=  . (257) 

Recall that N has units h/° .  Accounting for unit conversions ( h°  to rad/s), the 
expected variance after a triple integration from Appendix B is 
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This is a statistical measure that indicates the probability of the range error component 
falling within some value.  As with acceleration, we choose the seemingly reasonable 
criteria that two standard deviations should fall within the range error limit.  
Consequently 

rrσω <32 . (259) 

This implies the constraint 
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6.1.2.4 Bias Instability Errors 

We define the component due to bias instability as 

( ) ∫ ∫ ∫ ′=
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Recall that 1,,ωyn ′  is a random process with Power Spectral Density given by 
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Recall that B has units h/° .  Accounting for unit conversions ( h°  to rad/s), the expected 
variance after a triple integration from Appendix C is 
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As before we choose the seemingly reasonable criteria that two standard deviations 
should fall within the range error limit.  Consequently 

rrσω <42 . (264) 

This implies the constraint 
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6.1.2.5 Rate Random Walk Errors 

We define the component due to bias random walk as 

( ) ∫ ∫ ∫ ′=
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Recall that 2,,ωyn ′  is a random process with Power Spectral Density given by 
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However, this error can itself be modeled as an integration of white noise with Power 
Spectral Density of 36002K .  Consequently, ( )aTr 5,ωε  is in fact a fourth-order 
integration of white noise. 

Accounting for unit conversions ( h°  to rad/s), the expected variance after a fourth-order 
integration of the white noise from Appendix B is 

( ) ( ) 









×≈ −

2523600
8.91085.4

72
2262

5
aTK

ωσ . (268) 

As before we choose the seemingly reasonable criteria that two standard deviations 
should fall within the range error limit.  Consequently 

rrσω <52 . (269) 

This implies the constraint 
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6.2 Navigator Orientation Error and Pointing Limits 

From Section 4 we recall that the angular displacement (orientation) error around the z’ 
axis over a synthetic aperture is modeled as 

( ) ( )( )∫ ′′′⊥′′′ +++++Γ=∆
aT

zzznmztzaz dnnnT
0

2,,1,,0,,,max,, sin tφφωωθ ωωωε . 

  (271) 

This orientation error will cause an illumination error in the scene being imaged, as 
shown in Section 5.  We desire this orientation error to be some small fraction of the 
antenna beamwidth, say 

( ) zaz T ′′ Θ≤∆ βθ ε, , (272) 

where 

z′Θ  = the antenna beamwidth normal to the z’ axis, and 
β  = the fraction of the antenna beamwidth for the allowed error. (273) 

A reasonable number for β  might be 0.03 for a 1 dB variation after correction for the 
central 2/3 of the antenna beam, as shown in Section 5.   

The orientation error can be expanded to individual integrals as 
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As with position error, we will apply the criteria for ( )az Tεθ ,′∆  to each of these 
components. 

6.2.1 Scale Factor Errors 

We apply the angular error limit to scale factor errors as 

z

T

tz
a

d ′′ Θ<Γ∫ βtω
0

max, . (275) 

At shallow grazing angles, angular displacement around the z’ axis is equivalent to a 
heading change, which is plausible during a synthetic aperture.  Consequently we identify  

zd

T

tz
a

d ′′ ∆≈∫ ,
0

, θtω  = angular displacement. (276) 

This allows us to calculate  

zzd ′′ Θ<∆Γ βθ ,max . (277) 

This can be manipulated to 
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,

max θ
β

. (278) 

As previously discussed for position error, we will make the presumption of a heading 
change of one radian during the synthetic aperture.  This allows 

z′Θ<Γ βmax . (279) 

This also means that z′Θ  is reported in radians.  This value would also need to be 

multiplied by 610  if reported in PPM. 

Note that for a benign flight path with minimal heading changes, this limit might be 
easily be argued as very squishy. 

In any case, this is expected to typically a much sloppier limit than that developed for 
position error concerns. 
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6.2.2 Misalignment and Nonorthogonality Errors 

We apply the angular error limit to misalignment and nonorthogonality errors as 

( ) z

T

nmz
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d ′⊥′ Θ<+∫ βτφφω
0

, sin . (280) 

For shallow grazing angles, ⊥′,zω  corresponds primarily to roll and pitch motions.  Both 
of these tend to be maintained as constant during a synthetic aperture, that is, angular 
departures tend to be corrected by the aircraft controller.  As a consequence, we expect 
this component to be negligible. 

6.2.3 White Noise Errors (Angle Random Walk) 

We apply the angular error limit to the white noise term as 

z
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z
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Recall that 0,,ωyn ′  is a random process with Power Spectral Density given by 

( ) ( ) HzhNfSN
223600 °=  . (282) 

Recall that N has units h/° .  Accounting for unit conversions ( h°  to rad/s), the 
expected variance after integration from Appendix B is 

( ) aTN 2262
3 36001085.4 −×≈θσ . (283) 

This is a statistical measure that indicates the probability of the angular error component 
falling within some value.  As with previous analysis, we choose the seemingly 
reasonable criteria that two standard deviations should fall within the error limit.  
Consequently 

z′Θ< βσθ32 . (284) 

This implies the constraint 

h
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Note that z′Θ  is reported in radians. 
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6.2.4 Bias Instability Errors 

We apply the angular error limit to the bias instability term as 
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Recall that 1,,ωyn ′  is a random process with Power Spectral Density given by 
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Recall that B has units h/° .  Accounting for unit conversions ( h°  to rad/s), the expected 
variance after an integration from Appendix C is 
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As before we choose the seemingly reasonable criteria that two standard deviations 
should fall within the range error limit.  Consequently 

z′Θ< βσθ 42 . (289) 

This implies the constraint 
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Note that z′Θ  is reported in radians. 

6.2.5 Rate Random Walk Errors 

We apply the angular error limit to the bias instability term as 
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Recall that 2,,ωyn ′  is a random process with Power Spectral Density given by 
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However, as with position error analysis, this bias instability error can itself be modeled 
as an integration of white noise with Power Spectral Density of 36002K .  
Consequently, the integration of bias instability noise is in fact a double integration of 
white noise. 

Accounting for unit conversions ( h°  to rad/s), the expected variance after a double 
integration of the white noise from Appendix B is 
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As before we choose the seemingly reasonable criteria that two standard deviations 
should fall within the range error limit.  Consequently 

z′Θ< βσθ52 . (294) 

This implies the constraint 
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Note that z′Θ  is reported in radians. 

6.3 Summary of Instrument Parameter Limits 

We summarize the results of the previous two sections in the following tables. 

 

Table 2.  Summary of accelerometer parameter limits affecting position error. 

Parameter Criteria Units 

Scale Factor Errors 25
max 102 ar Tr×<Β  PPM 

Misalignment and Nonorthogonality ( ) 22.0sin arnm Trϕϕ <+   

Acceleration White Noise (VRW) 234108.8 ar TN r×<  Hzgµ  

Acceleration Bias Instability 25104.1 ar TB r×<  
gµ  

Acceleration Random Walk 255103.2 ar TK r×<  sgµ  
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Table 3.  Summary of rate gyro parameter limits affecting position error. 

Parameter Criteria Units 

Scale Factor Errors 25
max 10 ar Tr<Γ  PPM 

Misalignment and Nonorthogonality ( ) 22.0sin arnm Trφφ <+   

Rate White Noise (ARW) 25784 ar TN r<  h/°  

Rate Bias Instability 341093.8 ar TB r×<  h/°  

Rate Random Walk 27710 ar TK r<  23/ h°  

 

 

 

Table 4.  Summary of rate gyro parameter limits affecting antenna pointing error. 

Parameter Criteria Units 

Scale Factor Errors 
z′Θ<Γ β6

max 10  PPM 

Misalignment and Nonorthogonality N/A  

Rate White Noise az TN ′Θ< β1718  h/°  

Rate Bias Instability 
az TB ′Θ×< β51046.1  h/°  

Rate Random Walk 2371007.1 az TK ′Θ×< β  23/ h°  

Note that z′Θ  is reported in radians. 
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6.4 Examples  

We now examine three selected radar application scenarios, and compare IMU 
requirements to several commercial IMUs. 

6.4.1 Example Scenario Definition 

Scenario #1 

In this scenario we model a Ku-band SAR imaging broadside at 10 km range with 0.3 m 
resolution while traveling at 70 m/s (consistent with a Twin Otter aircraft).  The synthetic 
aperture time is slightly greater than 5 s.  The antenna azimuth beamwidth is 3.2 degrees, 
and the pointing tolerance is 0.03 beamwidths. 

Scenario #2 

In this scenario we model a Ku-band SAR imaging broadside at 10 km range with 0.1 m 
resolution while traveling at 36 m/s (consistent with a Predator A aircraft).  The synthetic 
aperture time is approximately 30 s.  The antenna azimuth beamwidth is 3.2 degrees, and 
the pointing tolerance is 0.03 beamwidths. 

Scenario #3 

In this scenario we model a Ku-band SAR imaging at a 45 degree squint angle at 25 km 
range with 0.1 m resolution while traveling at 36 m/s (consistent with a Predator A 
aircraft).  The synthetic aperture time is approximately 104 s.  The antenna azimuth 
beamwidth is 3.2 degrees, and the pointing tolerance is 0.03 beamwidths. 

6.4.2 IMU Performance Requirements and Candidates 

The three aforementioned scenarios and their IMU requirements are tabulated in Table 5 
along with some specifications of candidate IMUs.  Candidate IMU performance 
specifications are from the best grade of each IMU, and were collected from 
manufacturer data sheets, and a variety of literature sources.1,17,45  Laboratory 
measurements indicate that IMUs often perform better than their specifications, but are 
used in the table only when other sources couldn’t be found.  Note that not all parameters 
for which we have developed criteria have corresponding specifications for the different 
IMUs. 
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Table 5.  Example radar scenarios IMU requirements compared to Candidate IMU specifications. 

IMU Parameter Comparrison

Parameter Units #1 #2 #3 LN-200 HG-1700 HG-1900 HG-1930 HG-9900

wavelength m 0.018 0.018 0.018
resolution m 0.3 0.1 0.1
velocity m/s 70 36 36
range m 10000 10000 25000
window broadening 1.18 1.18 1.18
squint angle deg 90 90 45
antenna azimuth beamwidth deg 3.2 3.2 3.2
fractional pointing error 0.03 0.03 0.03

synthetic aperture time s 5.1 29.5 104.3
antenna pointing error limit deg 0.1 0.1 0.1

Accelerometers
Scale Factor PPM 2346.07 22.982 1.839 300 300 300 700 100
Misalignment & Nonorthogonality mrad 2.35 0.023 0.002 0.1 0.5
Bias ug 300 1000 1000 4000 25
White Noise (VRW) ug/sqrt(Hz) 2321.38 54.922 8.262 16 150 44 0.6
Bias Instability ug 1642.25 16.087 1.287 3.1 10
Random Walk ug/sqrt(s) 1199.74 4.866 0.207

Rate Gyros - Position Error Limits
Scale Factor PPM 1173.03 11.491 0.919 100 150 150 300 5
Misalignment & Nonorthogonality mrad 2.35 0.023 0.002 0.1 0.5
Bias deg/h 1.0 1.0 1.0 20.0 0.003
White Noise (ARW) deg/sqrt(h) 4.09 0.017 0.001 0.07 0.125 0.1 0.15 0.002
Bias Instability deg/h 207.14 0.348 0.008 0.35 1.0 0.3 5.5 0.003
Random Walk deg/h^3/2 10314.61 7.172 0.086 30

Rate Gyros - Pointing Error Limits
Scale Factor PPM 1675.52 1675.516 1675.516 100 150 150 300 5
Misalignment & Nonorthogonality deg/h 0.1 0.5
Bias deg/h 1.0 1.0 1.0 20.0 0.003
White Noise (ARW) deg/sqrt(h) 1.28 0.530 0.282 0.07 0.125 0.1 0.15 0.002
Bias Instability deg/h 48.37 8.292 2.345 0.35 1.0 0.3 5.5 0.003
Random Walk deg/h^3/2 1576.43 111.892 16.831 30.0

Scenario Candidate IMU

Note:  Bold entries are from Manufacturer Data 
Sheets.  Other entries are from other sources.

 

Of the candidate IMUs, the HG-9900 is a navigation grade IMU.  The LN-200, HG-1700, 
and HG-1900 are tactical grade IMUs, and the HG-1930 is a MEMS grade IMU. 

6.4.3 Comments on example scenarios and candidate IMUs 

As previously stated, accelerometer and gyro constant biases are assumed to be 
compensated by the EKF, and therefore assumed not relevant to navigation error growth 
and ultimately SAR image quality. 

In all cases, for our examples, gyro limits are constrained more by range (position) error 
limits rather than pointing error limits.  Should a requirement arise for Direction of 
Arrival measurements (e.g. IFSAR, Endo-clutter GMTI, etc.) then the pointing error 
limits might change, and the overall driver for requirements might change. 



 - 100 -  

Scenario #1 

This scenario’s parameter requirements are easily met by all candidate IMUs. 

Bottom Line:  Any of the IMUs are acceptable, including the lowest performance HG-
1930. 

Scenario #2 

For this scenario, with respect the IMU instrument noise parameters, only the HG-9900 
meets the required performance limits.  The next best IMU is the LN-200, which misses 
the rate gyro white noise (ARW) performance requirement by a factor of four.  It might 
be argued that with a ‘good’ aiding scheme that can correct for some of the effects of this 
error during a synthetic aperture, the LN-200 might be made to work somewhat better, 
perhaps even adequately.  Anecdotal evidence suggests that this is indeed the case.  
Nevertheless, the LN-200 by itself is judged to at best be marginal for this scenario.  The 
HG-1700 and HG-1900 performances are expected to be somewhat worse than the LN-
200.  Note that the HG-1700 fails the accelerometer white noise (VRW) criteria whereas 
the LN-200 betters it.  The HG-1930 is more than twice as noisy as the LN-200. 

Scale factors for the accelerometers are seemingly inadequate by a factor of 13 for the 
LN-200, HG-1700, and HG-1900, and by a factor of 30 for the HG-1930.  The HG-9900 
fails the accelerometer scale factor requirement by a factor of 5.  In the previous 
discussions, scale factor error limits were deemed very ‘squishy’, and are justifiably 
relaxed for shallow grazing angles and benign flight paths.  As a result, although not 
meeting this performance requirement should raise a warning flag for further analysis or 
testing, it does not automatically rule these IMUs out.  Instead, qualifiers of geometry 
limits or maneuver limits might be imposed.  The factor of 5 for the HG-9900 
accelerometer scale factor is easily relaxed by limiting the 10 km range to somewhat 
shallower grazing angles.  Doing so for the factor of 13 for the LN-200, HG-1700, and 
HG-1900 is a little more iffy, but the factor of 30 for the HG-1930 is very worrisome.   

The scale factors for the rate gyros are seemingly inadequate by a factor of 9 to 13 for the 
LN-200, HG-1700, and HG-1900, and by a factor of 26 for the HG-1930.  The HG-9900 
meets the gyro scale factor requirement.  Similarly, the rate gyro scale factors for the LN-
200, HG-1700, and HG-1900 require a more benign flight path than was presumed for the 
requirement, and the HG-1930 requires a more benign flight path yet. 

Bottom Line:  The HG-9900 will likely work very well.  The LN-200 is marginal, but is 
likely acceptable with good aiding.  The HG-1700 and HG-1900 will perform worse.  
The HG-1930 should be considered unacceptable for this scenario. 

Scenario #3 

For this scenario, none of the IMUs strictly meet the performance requirements.  The 
closest to meeting these is the HG-9900.  The rate gyro white noise (ARW) performance 
of the HG-9900 is within a factor of two for being adequate for this scenario.  With good 
aiding, this is likely adequate, although we might still expect occasional excessive motion 
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measurements errors due to gyro bias variations.  The other IMUs are two orders of 
magnitude worse in this performance parameter, and it is difficult to conceive of an easy 
way to overcome this.   

The HG-9900 accelerometer scale factor error specification is about 50 times greater than 
the requirement allows.  The other IMUs are 3 to 7 times worse than the HG-9900.  Even 
accounting for shallow grazing angles to relieve this requirement somewhat, it is likely 
that a good aiding scheme that operates during a synthetic aperture is still required for 
acceptable performance even from the HG-9900.  Nevertheless, further testing and 
analysis is called for.  

The HG-9900 IMU’s rate gyro scale factor error specification is about 5 times too large 
for the requirement.  The squishiness of this parameter suggests that by limiting the radar 
to benign flight paths, the HG-9900 is probably acceptable in this regard.  The other 
IMUs are 20 to 60 times worse than the HG-9900, and again two orders of magnitude or 
more from the performance level desired.   

Bottom Line:  With good aiding, the HG-9900 is likely adequate.  The other IMUs are 
not likely to yield acceptable performance.  Very good aiding and enhanced autofocus 
techniques might be considered if tactical-grade IMUs are a constraint. 

6.4.4 Some Final Comments 

Clearly, while the foregoing analysis resulted in analytical parameter limits for IMU 
selections, care should be taken to appreciate the limitations of these criteria.   

A number of approximations and simplifications were made to arrive at the analytical 
parameter limits.  Consequently, these analytical parameter limits should themselves not 
be hard selection criteria between various IMUs.  They might be employed to provide a 
basic first-order selection.  Should an IMU not meet these requirements, depending on 
the degree of its inadequacy, a number of options exist that might yet tolerate its 
weaknesses, and still render useful navigation.  Some of these options will be discussed 
later.   

Furthermore, the degree and performance of aiding schemes may also have a significant 
impact on acceptable navigator performance.  Alternatively, the results of the above 
analysis might indicate when a higher performance aiding scheme might be called for. 

Finally, this analysis should not be used as a substitute for high fidelity simulations or 
extensive testing to validate the performance of an instrument or more generally the 
navigation sub-system.  As the tables indicate, manufacturer data sheets are often 
incomplete.  Consequently, after initial down-selection, the next step in navigator design 
is to acquire and comprehensively test candidate IMUs to fill in the knowledge gaps. 
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6.5 A Note About Simulations 

Further insight into the behavior of IMUs for SAR applications can be had by simulating 
the IMU with high fidelity for the various scenarios under consideration.  As with all 
simulations in general, any one simulation is merely one member of an ensemble of 
possible outcomes for a number of random variables and processes.  Consequently, for 
simulations to be valuable, many trials need to be run with various parameter variations, 
i.e. a Monte Carlo analysis, for a good statistical measure.  Nevertheless, extending the 
comparison of this report, a high-fidelity simulation would be expected to allow for the 
complex interactions of various IMU characteristics with a full 3-D IMU excitation. 

Furthermore, a simulation can be expanded to incorporate any IMU aiding scheme and 
evaluate complete navigation performance.  This was, for example, the approach taken by 
Pedlar and Coe.46 

However, the criteria for which a simulation result is evaluated remains unchanged from 
that of our analytical results.  That is, the allowable range error for the navigator needs to 
be within the capabilities of what a SAR autofocus algorithm can correct.  For a 
conventional autofocus, this means that the allowable nonlinear range error variation 
during a synthetic aperture be limited to less than the range resolution of the SAR. 

We also retain the following criteria for SAR, 

Sinusoidal Phase Error less than 1 degree (peak), and 

Random phase error less than 1 degree standard deviation. 
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6.6 More Comments About S-turns – How Often? 

We have ignored aiding the IMU in the development of parameter limits thus far, for the 
reasons cited previously.  We briefly digress now to one aspect of GPS-aiding discussed 
in Section 3, namely heading error accumulation.  As shown, reducing uncertainty in this 
error requires maneuvers with large extended horizontal accelerations, as with S-turns.  
The question we address now is “How often do we need to perform S-turns (or other 
suitable maneuvers)?” 

The heading error uncertainty is simply an accumulated orientation (angle) error 
uncertainty.  We will adopt a very simple criterion for the period between S-turns, 
namely  

1. to initiate an S-turn, the accumulated heading error uncertainty needs to exceed 
some upper threshold for the pointing error for the antenna, and  

2. S-turns are employed to reduce the heading error uncertainty to below some lower 
threshold. 

We note that over the scale of minutes to tens of minutes, the significant rate gyro noise 
sources include white noise (ARW) and bias instability.  Due to published parameter 
availability, we confine ourselves to these two noise sources.  Consequently, the total 
standard deviation in the angle error due to the combined noise sources is 

2
4

2
3 θθθ σσσ += . (296) 

Of course, this can be expanded and related to time as 
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The time it takes to achieve a particular total uncertainty can be solved for using the 
quadratic formula as 
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BNN
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If we define heading uncertainty limits as follows: 

upper,θθ σσ =  = condition for initiating an S-turn maneuver, and 

lower,θθ σσ =  = condition for ceasing an S-turn maneuver, (299) 

then the time period between S-turns can be calculated as 
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The question becomes “What are good heading uncertainty limits for initiating and 
ending S-turns?” 

Anecdotal evidence suggests that reasonable performance is obtained if 

≈upper,θσ  70% of z′Θβ , and 

<lower,θσ  70% of upper,θσ . (301) 

Recall that z′Θβ  is the pointing error limit in radians.   

Example:  LN-200 IMU 

The LN-200 IMU specifications are given in Table 5.  A sample IMU was measured to 
have values for N and B of approximately half the specification.  The time to reach a 
particular heading uncertainty is plotted in Figure 15, for both an IMU operating at the 
limit of the specification, and the sample IMU. 

We choose uncertainty thresholds of 

upper,θσ  = 0.00122 rad = 0.07 deg, and 

lower,θσ  = 0.00087 rad = 0.05 deg. (302) 

We can then calculate 

turnS−T  ≈ 5 minutes for the specification, and 

turnS−T  ≈ 10 minutes for the sample IMU. (303) 

Of course, there is no guarantee that the heading error will grow to the limit in the time 
calculated, as the calculation is just a statistical expected value.  Nevertheless, we should 
not be surprised at these heading uncertainty growth rates based on the IMU’s 
performance parameters. 
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Figure 15.  Heading uncertainty growth from perfect alignment. 

Example:  Other IMUs 

Using the same criteria as for the LN-200, the other IMUs in Table 5 were also assessed 
for S-Turn recommended periods.  These are summarized as  

LN-200 ~5 minutes 

HG-1700 ~2 minutes 
HG-1900 ~5 minutes 

HG-1930 ~20 seconds 
HG-9900 ~9 hours 

Note that this presumes the IMUs performing at the limit of their respective 
specifications.  We would generally expect a sample IMU to perform better than the 
limit, but of course this cannot be guaranteed.  In addition, other rate gyro noise terms 
become significant over longer integration times.  These have not been included in the S-
turn period requirement, but would serve to reduce the given times somewhat. 
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6.7 What if we can’t get a good enough IMU? 

The choice of an IMU for a SAR system will often depend on many factors in addition to 
navigation performance, including size, weight, cost, delivery, etc.  Indeed, scenarios can 
be conjured where even the best IMU will not be guaranteed to perform ‘good enough’ 
for high-quality SAR image formation.  Sometimes you just can’t get the IMU you want.  
Consequently, it is useful to examine some alternatives for dealing with otherwise 
inadequate IMU performance. 

1. As previously indicated, the manifestation of acceleration scale factor errors in 
SAR image quality depends on imaging geometry, having a lesser influence at 
shallower grazing angles.  Likewise, rate gyro scale factor errors depends on the 
degree of maneuver during the synthetic aperture, having a lesser influence for 
benign flight paths.  Consequently, limiting imaging geometry or aircraft 
maneuver would allow using a lesser quality IMU (with respect to scale factor 
errors) that what would otherwise be required. 

2. The IMU performance requirements assumed no aiding of the IMU during a 
synthetic aperture.  Incorporating such intra-aperture aiding might mitigate the 
position errors somewhat before they are accumulated.  Aiding during a synthetic 
aperture must avoid adding any discontinuities in the phase error, and preferably 
none in the phase gradient either.  This is required because the autofocus 
algorithms conventionally used have great difficulty dealing with high-frequency 
components in the phase error. 

3. The range error limits used to develop the IMU instrument error requirements 
presumed a conventional autofocus for SAR.  Employing a more general 
autofocus that corrects residual migrations greater than the range resolution would 
allow relaxing the requirements for the IMU. 

4. Limiting radar geometry and motion so as to fly the synthetic aperture quicker 
would allow a shorter aperture time, thereby allowing less instrument drift.  
Basically this means to fly faster and closer to the target scene. 
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6.8 Other Frequently Asked Questions 

We address some residual frequently asked questions. 

Will better GPS help keep down heading uncertainty? 

Probably not – From the earlier analysis, the problem is that the orientation of the IMU 
about the vertical axis is not observable in straight and level flight.  Consequently, even 
with perfect GPS measurements, nothing changes about the observability of the necessary 
error.  However, since multiple GPS observations are requires during an S-turn, or 
comparable maneuver, for among other things to beat down the noise in GPS 
measurements, a higher-fidelity set of GPS measurements might allow shorter 
measurement times with lesser horizontal accelerations to suffice.  Basically, this might 
allow bringing down errors during an S-turn quicker due to less noisy GPS 
measurements, but not reduce the need for them. 

Will a calibrated IMU reduce the need for S-turns? 

Probably not – IMU orientation uncertainty is driven by rate gyro noise.  Since the noise 
is random, it is unpredictable, except in a statistical sense.  Nevertheless, the noise is not 
controllable, and consequently knowledge of its statistics cannot mitigate the heading 
error or its growth.  However, understanding the noise statistics via a calibration 
procedure does help us predict bounds on the error growth better, but not make its growth 
slower.  Knowledge of the growth statistics will however help us ‘tune’ the EKF for 
better overall navigation performance. 

Can we have good navigation for SAR and nevertheless have bad antenna pointing? 

Possibly yes – For SAR focusing and target location, the navigation accuracy required is 
principally in the relative positions from which the data is collected, that is, the 
translational motion of the radar.  For target scene illumination, the navigation accuracy 
required includes accurate translational motion, but also the rotational orientation of the 
radar antenna.  From the earlier analysis, in straight and level flight, translational motion 
can be measured and corrected, but heading angle cannot.  Consequently, it is 
conceivable that the SAR image can be well focused and with good location accuracy, 
but antenna pointing is still unacceptably ‘off’.  

Can slewing the gimbal substitute for (or aid) S-turns? 

Probably not – to estimate heading error, the IMU needs an extended period of 
accelerations with sufficiently large horizontal motion to also be measurable by the GPS 
instrument.  Gimbal slewing is unlikely to provide either. 
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Is calibrating the IMU worthwhile? 

Mixed bag – With noise characteristics, we get what we get, but calibration can tell us 
what we do get to help tune the EKF.  With scale factors, a short term improvement can 
sometimes be had, but the ‘better’ numbers are generally unstable over time.† 

Is there any reason why IMU or navigator performance should be different in different 
radar modes, e.g. SAR and GMTI? 

Not really – This is true for antenna pointing.  A case could be made that with aiding 
during a synthetic aperture, that target location accuracy may be somewhat better for 
longer synthetic apertures, e.g. finer resolutions. 

Can even the best IMU be not good enough sometimes? 

Yes – As previously mentioned, for this development we have assumed an atmosphere 
between radar and target scene that relates phase exactly proportional to range, which in 
fact is generally not true.  The atmosphere does distort the ‘electrical range’ so that even 
perfect motion measurement cannot prevent phase errors manifesting in the SAR image.29  
Denny & Scott47 claim that “the performance of future high-resolution SAR modes will 
be limited by anomalous propagation effects, rather than by platform measurement errors 
or focusing algorithm limitations, or RF wavelength.”  Their evidence suggests that 
ranges of 25 km or so will already at times cause an atmosphere-induced apparent range 
error variation exceeding 0.1 m, judged debilitating based on conventional autofocus for 
these fine resolutions.  This implies that a more general autofocus might be required even 
with error-free motion measurement. 

Can multiple antenna phase centers or beams help? 

Yes – multiple phase centers or beams allow, depending how they are arranged, 
independent measures of DOA.  These measures can be compared with Doppler-derived 
DOA estimates to align the antenna with respect to heading error.  For SAR, this is 
described in a report by Doerry.26  In GMTI, this is sometimes referred to as “Cal on 
Clutter.” 

 

 

 

                                                
† Ted Kim, of Sandia Natinal Laboratories, opines that calibrating rate gyro scale factors “Maybe can 
improve short term performance by 2x”.  (email sent Tuesday, September 23, 2008 12:46 PM) 
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7  Conclusions 

7.1 Summary Comments 

The following summary points are worth repeating. 

• IMUs are comprised of inertial sensing instruments with limited precision and 
accuracy.  The degree of variation in precision and accuracy across the various 
IMUs offered by vendors is quite large. 

• The precision and accuracy of the accelerometers and rate gyros that typically 
make up an IMU are limited by a variety of scale factor errors, misalignment and 
nonorthogonality of the instruments, and a variety of noise terms. 

• The various error sources in the accelerometers and rate gyros can be analytically 
related to an accumulated position error, which in turn provides a range error 
between radar and target, and ultimately manifests as a phase error to the radar, 
thereby degrading the data quality. 

• Autofocus techniques can mitigate phase errors to some limited extent.  Different 
autofocus techniques and implementations can mitigate phase errors to different 
extents.  Conventional autofocus techniques can mitigate phase errors up to a 
corresponding range error equal to the range resolution of the SAR.  In this case, 
motion measurement needs to provide fidelity sufficient to not vary the range 
error more than the range resolution of the SAR during its synthetic aperture.  

• The allowable range error variation over a synthetic aperture can be related to 
limits on various error sources of the IMU instruments.  These limits on various 
IMU instrument error sources define a minimum level of precision and accuracy 
of the IMU, and can be used to provide initial selection criteria for candidate 
IMUs for a specific SAR performance parameter space. 

• The analysis that leads to analytical qualifications does make a number of 
approximations and assumptions, just to make the task tractable.  While the 
analytical results might be useful for initial selection criteria between candidate 
IMUs, they do not substitute for extensive testing and high-fidelity simulations to 
assess likely performance. 
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7.2 Design Recommendations 

Based on the analysis in this report, we suggest the following design procedure for a SAR 
system, including its motion measurement capabilities. 

1. From basic SAR system performance requirements, select an IMU using the 
criteria developed above in this report.  Presume the use of conventional 
autofocus for SAR image formation.  Candidate IMUs should be extensively 
tested and simulated as part of the navigation subsystem. 

2. Design an aiding scheme for the IMU.  This should include attention to 
operational concepts and limitations regarding, for example, any S-turns or other 
relevant procedures.  The entire navigation subsystem should be extensively 
tested and simulated to facilitate performance prediction for the entire SAR 
system. 

3. Examine the larger operational parameter space for the SAR system for deficient 
performance by the IMU and the larger navigation subsystem with respect to 
excessive range error variations.  Select conditions for which migration corrective 
autofocus needs to be employed, and design in this autofocus capability with 
perhaps triggers for its optional employment. 

4. Examine the larger operational parameter space for the SAR system for deficient 
performance by the IMU with respect to antenna pointing due to heading errors.  
Select conditions for which data-driven antenna pattern correction is needed, and 
design in this capability with perhaps triggers for its optional employment. 
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Appendix A – Allan Variance 
The Allan variance, named after David W. Allen, also known as two-sample variance, is 
a measurement of stability.  Originally developed for measuring clock frequency 
stability, it is readily applicable to measuring the stability of IMU parameters. 

A number of references are listed on David Allen’s own web site.‡ A number of other 
independent references also exist, and are easily found in the literature.  This includes an 
IEEE Standard with an Appendix describing Allan variance measurements.48 

The Allan variance is calculated via the following procedure: 

1. Collect contiguous samples nx  for totalNn ≤≤1  at a sampling rate sf . 

2. Divide the totalN  samples into groups of contiguous samples of length groupN .  

Note that groupN  represents a time interval of 

sgroup fN=τ  (A1) 

and there are K total groups where 

( )grouptotal NNK floor= . (A2) 

3. Calculate the mean value for each group, and collect the results.  That is 
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4. Calculate the Allen variance for this specific t  as 
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5. Repeat for new groupN . 

6. Plot ( )τAVAR  versus t  typically on a Log-Log plot. 

                                                
‡ http://www.allanstime.com/AllanVariance/ 

http://www.allanstime.com/AllanVariance/
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Note that if t is such that K is less than 10 or so, then the statistics become somewhat 
unreliable.   

The square root of Allan variance is often referred to as Allan deviation.  This is what is 
typically plotted on the log-log scale. 

A low Allan variance is a characteristic of a clock with good stability over the measured 
period.  A typical Allan variance plot for an angular rate sensor is given in Figure 16.   

The various slopes and features of the plot indicate different instability mechanisms as 
dominating at the various time scales.  An Allan variance curve is typically U-shaped in 
the log-log plot. 

A slope of −1 indicates a region dominated by ‘quantization noise’ due to digital 
encoding of the sensor outputs. 

A slope of −1/2 indicates a region dominated by a ‘random walk’ component.  
The source seems to be white noise in the rate-gyro in the case of angular random 
walk, and the accelerometers themselves for a velocity random walk. 

A slope of 0 indicates a region dominated by ‘bias instability’.  This is generally 
at the bottom of the ‘U’.  This seems to be generally attributed to flicker noise in 
the electronic components. 

A slopes of +1/2 indicates a region dominated by a ‘rate random walk’. 

A slopes of +1 indicates a region dominated by a ‘drift rate ramp’. 

Figure 17 summarizes the expected locations of these various instability manifestations 
on an Allan variance plot. 

Furthermore, we note that the Allan variance is related to the two-sided Power Spectral 
Density (PSD) of the error as follows 

( ) ( ) ( )
( )

df
f

ffSAVAR 2

4

0

sin4
τπ

τπτ ∫
∞

= . (A5) 

where 

( )fS  = two-sided PSD of the error signal. (A6) 

Finally, we note that the application of Allan variance analysis to accelerometer and rate-
gyro noise parameters is also well documented in the literature.13,49,50 
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Figure 16.  Typical Allan variance curve for an angular rate sensor.  (Courtesy Dr. Walter Stockwell, 
Crossbow Technology, Inc., http://www.xbow.com) 

 

 

Figure 17.  Typical Allan variance regions corresponding to specific instability sources for a Fiber 
Optic Gyro (FOG).  Both axes are logarithmic.  (Fig. C.8 in IEEE Std 952-1997 48) 

 

http://www.xbow.com/
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“I wish I had an answer to that because I'm tired of answering that question.” 
-- Yogi Berra 
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Appendix B – Random Walk 
The term Random Walk (RW) denotes a process whereby a trajectory is generated by 
taking random steps (perhaps in size and or direction).  This model finds utility in a wide 
variety of applications.  There are many variations on the basic theme, with different 
probability distributions to describe the steps.  Random Walk processes also go by a 
variety of other names, some of which are quite colorful, e.g. drunkards walk, Levy 
flight, etc.  In the limit, a Random Walk describes Brownian Motion.  Most Random 
Walk processes are related to Markov Processes, and Markov Chains. 

We will discuss here a very specific Random Walk model; one generated by integrating 
White Gaussian Noise (WGN). 

Consider sampled data of a zero-mean WGN process, with the following parameters. 

sf  = the sampling frequency,  
2
xσ  = the variance of each individual sample. (B1) 

Furthermore, we can calculate 

ss fT 1=  = the sample period, and 
2

0 2 xsTN s=  = the Power Spectral Density of the noise process. (B2) 

We denote the individual samples as 

 ix  = sample with index i, where 1≥i . (B3) 

Consequently, an ensemble of samples define the random sequence 

,...,,,, 54321 xxxxx  = random sequence. (B4) 

Integrating (accumulating) this sequence generates the Random Walk.  The number of 
times it is integrated denotes the order of the Random Walk. 

Discrete-Time First Order Random Walk 

Consider the random process generated as follows. 

( ) ∑
=

=
I

i
is xTTy

1
1 . (B5) 

where 

sITT =  = the time over which the integration takes place. (B6) 
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This can be expanded to 

( ) ( )11 xTTy ss =  
( ) ( )211 2 xxTTy ss +=  
( ) ( )3211 3 xxxTTy ss ++=  
( ) ( )43211 4 xxxxTTy ss +++= . (B7) 

This integration of WGN is termed a ‘First Order’ Random Walk. 

Since we are accumulating zero-mean WGN samples, ( )Ty1  is also zero-mean and 
Gaussian, but no longer white, i.e. no longer uncorrelated samples.  The variance of 
( )Ty1  is dependent on T and is calculated as follows. 

( ){ }1

22 2 2 2 2 2
1

1

I

y s x s x s x
i

E y T T T I T Tssss  
=

= = = =∑ . (B8) 

Note also that this can be written in terms of PSD as 

( )20
2
1

NTy =σ . (B9) 

The important point to note here is that the variance 2
1yσ  grows linearly with T.  This is 

more often stated as the standard deviation 1yσ  grows as T .  Figure 18 illustrates 
several cases of a First Order Random Walk, all with input noise using the same sampling 
and statistics parameters. 

Discrete-Time Second Order Random Walk 

Consider the random process generated by double-accumulating the noise samples, 
namely 

( ) ∑ ∑
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This can be expanded to 

( ) ( )1
2

2 xTTy ss =  

( ) ( )21
2

2 22 xxTTy ss +=  

( ) ( )321
2

2 233 xxxTTy ss ++=  

( ) ( )4321
2

2 2344 xxxxTTy ss +++= . (B11) 
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Figure 18.  Ten examples of a First Order RW.  Dotted lines show one and two standard deviations of 
the expected displacement. 
 

This defines the ‘Second Order’ Random Walk.  This can be reformulated to the 
summation 
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The variance of ( )Ty2  is calculated to be 
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This is approximated for large I as  
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Figure 19.  Ten examples of a Second Order RW.  Dotted lines show one and two standard deviations 
of the expected displacement. 
 

In terms of the PSD, this becomes 

( )2
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0
32

2
NTy =σ . (B15) 

The important point to note here is that the variance 2
2yσ  grows with 3T .  This is more 

often stated as the standard deviation 2yσ  grows as 23T .  Figure 19 illustrates several 
cases of a Second Order Random Walk, all with input noise using the same sampling and 
statistics parameters. 

Discrete-Time Third Order Random Walk 

Consider the random process generated by triple-accumulating the noise samples, namely 
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Figure 20.  Ten examples of a Third Order RW.  Dotted lines show one and two standard deviations 
of the expected displacement. 
 

This can be expanded to 

( ) ( )1
3
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This defines the ‘Third Order’ Random Walk.  This can be reformulated to the 
summation 
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The variance of ( )Ty3  is calculated to be 
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This is approximated for large I as  
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In terms of the PSD, this becomes 
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The important point to note here is that the variance 2
3yσ  grows with 5T .  This is more 

often stated as the standard deviation 3yσ  grows as 25T .  Figure 20 illustrates several 
cases of a Third Order Random Walk, all with input noise using the same sampling and 
statistics parameters. 

Discrete-Time Fourth Order Random Walk 

Consider the random process generated by 4-stage accumulating the noise samples, 
namely 
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This can be expanded to 
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This defines the ‘Fourth Order’ Random Walk.  This can be reformulated to the 
summation 
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Figure 21.  Ten examples of a Fourth Order RW.  Dotted lines show one and two standard deviations 
of the expected displacement. 

The variance of ( )Ty4  is calculated to be 
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This is approximated for large I as  
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In terms of the PSD, this becomes 
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The important point to note here is that the variance 2
4yσ  grows with 7T .  This is more 

often stated as the standard deviation 4yσ  grows as 27T .  Figure 21 illustrates several 
cases of a Fourth Order Random Walk, all with input noise using the same sampling and 
statistics parameters. 

Discrete-Time General Comments 

In general, an Mth order accumulation will yield at time ITT s=  the series 

( ) ( ) ( ) ( ) ( )( )II
M

ssM xIMCxIMCxIMCxIMCTITy ,...,,, 332211 ++++= . (B28) 

We identify 

( ) ( ) ( )IMCIMCIMC iii ,11,, −+−= , (B29) 

and the properties 

( ) 0, =IMCi  for Ii > , 
( ) 1, =iMCi , 
( ) .1,1 =ICi  (B30) 

The variance 2
Myσ from such a series will grow with 12 −MT .  This is more often stated as 

the standard deviation Myσ  grows as 21−MT .  Generally, as the order of integration 
increases, the variance will grow faster with time. 

 

Continuous Time 

The same results can be calculated in continuous time. 

Consider a White Gaussian Random Process defined as 

( )tx  = input random process, (B31) 

with autocorrelation function 

( ) ( )21
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21 2
, ttNttR −= δ . (B32) 
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Continuous-Time First Order Random Walk 

We calculate the First Order Random Walk as 

( ) ( )dttxTy
T

∫=
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1 . (B33) 

The output variance is calculated as 
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which becomes 
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This can be expanded to 
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Performing the integrations yields 
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This corresponds exactly with the earlier result using sampled data. 

Continuous-Time Second Order Random Walk 

We calculate the Second Order Random Walk as 
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This needs to eventually be written as a single integration over t, which necessitates 
changing the order of integration.  Consequently, we do this with appropriate changes in 
integration limits and get 
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The output variance is calculated as 
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which becomes 
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This can be expanded to 
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Performing the integrations yields 
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This also corresponds exactly with the earlier result using sampled data. 

Continuous-Time Third Order Random Walk 

We calculate the Third Order Random Walk as 
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This also needs to eventually be written as a single integration over t, which again 
necessitates changing the order of integration.  Consequently, we do this with appropriate 
changes in integration limits and ultimately get 
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The output variance is calculated as 
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which becomes 
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This can be expanded to 

( ) ( ) ( )∫ ∫ −
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Performing the integrations yields 
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
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This also corresponds exactly with the earlier result using sampled data. 

Continuous-Time Fourth Order Random Walk 

We calculate the Fourth Order Random Walk as 

( ) ( )∫ ∫ ∫ ∫ 
















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


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. (B50) 

This also needs to eventually be written as a single integration over t, which again 
necessitates changing the order of integration.  Consequently, we do this with appropriate 
changes in integration limits and ultimately get 

( ) ( ) ( ) dttTtxTy
T

∫
−

=
0

3
4 6

. (B51) 

The output variance is calculated as 



 - 126 -  
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which becomes 
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This can be expanded to 

( ) ( ) ( )∫ ∫ −
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Performing the integrations yields 
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
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This also corresponds exactly with the earlier result using sampled data. 

Continuous-Time General Order Random Walk 

We calculate the Kth Order Random Walk as 

( ) ( ) ( )( )

( ) dt
K

tTtxTy
T K

K ∫









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0

1

!1
. (B56) 

The quantity in the square brackets describes a measure of the enclosed space of a 
( )1−K  dimensional hypertetrahedron.  For example, for a 2-D hypertetrahedron the 
measure is an area of a triangle, and for a 3-D hypertetrahedron the measure is a volume 
of a tetrahedron.  The general hypertetrahedron is formed from a hypercube with edges of 
length ( )tT − , where the hypertetrahedron contains one apex vertex and all other adjacent 
vertices which are a distance ( )tT −  away.  Examples are shown in Figure 22.  Note that 
all 2-D projections are triangles, and all triangles have the same apex. 

The output variance is calculated as 
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Figure 22.  Hypertetrahedrons formed from vertices of hypercubes. 

which becomes 

( )( )( )( )
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This can be expanded to 
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Performing the integrations yields 
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A Special Note 

The expression for variance 

( )( )( )( )

( )( )
( )∫ ∫ −

−−
=

−−T T KK

y dtdtttR
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tTtT
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0
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12 ,
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σ , (B61) 

does not yet presume any particular noise autocorrelation function, and hence is 
applicable to noise with other than ‘white’ characteristics. 
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“Do what you can, with what you have, where you are. “ 
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Appendix C – 1/f Noise 
1/f noise is also known as ‘flicker’ noise, or ‘pink’ noise.  This specifically refers to noise 
with a Power Spectral Density (PSD) with a form 

( )
2

CS f
f απ

= . (C1) 

where 

C  = some constant, and 
α  = a constant most often where 20 <<α . (C2) 

The usual case, and the case of interest to this report, is when 1=α .  Henceforth we will 
concern ourselves with 

( )
2

CS f
fπ

= . (C3) 

Noise with this characteristic was first identified in 1925, and random behavior with this 
characteristic is found widely in nature.  This characteristic represents behavior 
somewhere in between that of white noise ( 0=α ), and a first-order random walk 
( =α 2).  As a consequence, it cannot be generated generally by integrating white noise, 
as can random walks.  However, it is possible to get this behavior over limited 
bandwidths by appropriately filtering white noise. 

The autocorrelation function is directly calculated to be 

( )
( )( )LnC t

R t
γ

π

+
= − , (C4) 

where  

γ  = Euler’s Constant Gamma, ≈γ 0. 5772.  (C5)  

Note that ( )tR  is infinite at 0=t .  It is somewhat disconcerting that ( )tR  grows 
increasingly negative as t  gets very large. 

Unlike random walks, it is not possible to generate flicker noise by integrating white 
noise.  However, Barnes and Allen51 have shown how to generate flicker noise from 
white noise using the method of fractional order of integration. 
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Approximations to PSD 

For our purposes, we only need the 1/f characteristic over some finite bandwidth, and for 
some finite time.  To generate a suitable approximation of this we construct a random 
process by filtering and adding a number of uncorrelated white noise processes. 

( ) ( ) ( )
1

*
K

k k
k

n t h t n t
−

= ∑ , (C6) 

where 

( )kh t  = independent filters’ impulse response, and 

( )kn t  = independent WGN sources. (C7) 

The filters have transfer functions that are the Fourier Transforms of their respective 
impulse responses, namely 

( ) ( )k kh t H f⇔ . (C8) 

We stipulate that each noise source ( )tnk  has an equivalent white PSD, that is 

( ) 0
0 2

NS f = . (C9) 

The output PSD is then the input PSD modified by the sum of the various filters, that is 

( ) ( ) ( ) 2
0

1

K

k
k

S f S f H f
=

= ∑ . (C10) 

Our design criteria is that we desire 

( )
2

2
BS f

fπ
≈    for 21 fff ≤≤ . (C11) 

We assume 1f  and 2f  are positive and furthermore greater than zero.  Reasonable 
frequency limits for the band of interest are from something less than (observation time)-1 
up to the sampling frequency.  Outside this band of interest, we will accept anything less 
than the 1/f characteristic.  For example, for 1ff <  a constant value would suffice, and 

for 2ff >  we will accept zero, or perhaps a 1/f2 characteristic. 

In general, we desire ( )fHk  to be a low-pass filter where 
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( ) 2 2 ref
0

, ,
k

c k c k

f fH f C W
f f

   
=       

   
, (C12) 

where 

,c kf  = the corner frequency of the kth filter, 

reff  = specific reference frequency for which gain is desired 
2
0C  = constant gain factor, and 
( )fW  = filter function template. (C13) 

We require ( )fW  to be a low-pass function with unity DC gain, and unity corner 
frequency.  Departures from this will be handled via frequency and amplitude scaling.  
Consequently, the approximated PSD is given by 

( ) 20 ref
0

, ,12

K

c k c kk

N f fS f C W
f f=

   
=       

   
∑ . (C14) 

Note that we require the reference frequency to be within the range of interest, 

1 ref 2f f f≤ ≤  (C15) 

and we desire proper scaling of the approximation, namely 

( )
2

20 ref ref
ref 0

, , ref12 2

K

c k c kk

N f f BS f C W
f f fπ=

   
= =      

   
∑ . (C16) 

This implies that the constant gain factor can be calculated as 

2
2
0

0 ref ref
ref

, ,1
2

2

K

c k c kk

BC
N f ff W

f f
π

=

=
    
             

∑
. (C17) 

We will assume a logarithmic distribution for kcf ,  as a matter of convenience.  We 
consequently define 

1
, 1

k
c kf f f −

∆= , (C18) 

where the corner frequency increment factor is calculated to be 
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1
12

1

Kff
f

−
∆

 
=  
 

. (C19) 

This implies that the individual corner frequencies can be found by 

1
12

, 1
1

k
K

c k
ff f
f

−
− 

=  
 

. (C20) 

The choice of  filter template ( )fW  allows some latitude.  For example, any of the 
following may find some utility. 

( )
( )2
1

1
W f

f
=

+
, (C21) 

( ) rect
2
fW f  =  

 
, (C22) 

( ) 2sinc
2
fW f  =  

 
, or (C23) 

( ) sinc
2
fW f  =  

 
, (C24) 

where 

( ) 1 1 2
rect

0
z

z
else

 ≤
= 


, and (C25) 

( ) ( )sin
sinc

z
z

z
π

π
= . (C26) 

One might develop some angst in the fact that ( )fW  in some cases may contain negative 
values.  However, the requirement is in fact for ( ) 0≥fS  for the frequency ranges of 
interest, and not necessarily for each component member.  Whether or not the individual 
filters are realizable is not material to this analysis. 

The autocorrelation function for the accumulated PSDs is given by the accumulation of 
Fourier Transforms of the individual components of the PSD.  That is 
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( ) ( )1 2 1 2
1

,
K

k
k

R t t R t t
=

= −∑ , (C27) 

where the autocorrelation component functions have Fourier Transform 

( ) 20 ref
0

, ,2k
c k c k

N f fR t C W
f f

   
⇔       

   
. (C28) 

Consequently, we identify the component autocorrelation functions as 

( ) ( )20
0 ref ,2k c k

NR t C f w f t= , (C29) 

where we identify the Fourier Transform pair 

( ) ( )w t W f⇔ . (C30) 

Putting these together yields the composite autocorrelation function 

( ) ( )( )20
1 2 0 ref , 1 2

1
,

2

K

c k
k

NR t t C f w f t t
=

= −∑  (C31) 

PSD Approximation Example 

We now examine the PSD based on a specific model.  For the case 

( )
( )2
1

1
W f

f
=

+
, (C32) 

we identify the kth noise component filter as 

( ) 0 ref ,

,
1

c k
k

c k

C f f
H f fj

f

=
+

. (C33) 

The filter’s impulse response is in fact 

( ) ( ) ( ),2ref
0 ,

,
2 c kf t

k c k
c k

fh t C f e U t
f

ππ −= , (C34) 

where we employ the unit step function 
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Figure 23.  PSD of approximation to 1/f noise.  In this example, 9=K , and 10=∆f . 

 

( ) 1 0
0

t
U t

else
≥

= 


. (C35) 

Figure 23 illustrates an example where several noise sources each with unit PSD 
distributed between 0.01 Hz and 100 Hz are added to form a composite random process 
with 1/f roll-off between these limits, and normalized to unit PSD at f = 1 Hz. 

Note that this approximation can be made arbitrarily accurate by choosing an appropriate 
number and spacing of the corner frequencies.  Note also that each filter dominates some 
region of frequency nearest to its corner frequency. 

Clearly, at this point we have a way to filter white noise to achieve an arbitrarily accurate 
approximation to 1/f noise over whatever bandwidth we may choose.  Furthermore, the 
filters are linear, and in fact realizable.  We could build this if needed. 

The autocorrelation function is then simply the Inverse Fourier Transform of the 
composite PSD, namely 

( )
1

1 1 2220
1 2 0 ref

1
,

2

kK
f f t t

k

NR t t C f e ππ
−

∆− −

=
= ∑ . (C36) 
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For this example, we note that the scale factors ahead of the summation equate to 

( )

2
20
0 ref

ref
ref

, ,1

2 12
K

c k c kk

N BC f
ff W

f f
π

=

=
   
      
   

∑
. (C37) 

With respect to the summation, if the corner frequencies are not too bunched together, 
then we can approximate the summation with the contribution from the dominant filter.  
Consequently, the summation at the reference frequency can be approximated as 

ref

, , ref1

1 1K

c k c kk

fW
f f f=

     
≈             

∑ . (C38) 

This allows the approximation  

2
20
0 ref2 2

N BC f
π

= . (C39) 

The autocorrelation function for this model can then be simplified somewhat to 

( )
1

1 22 2

1 2
1

,
2

kf t t fK
f

k

BR t t e
π ∆

∆
− −

=

 
=   
 

∑ . (C40) 

Note that this autocorrelation function is always positive.  However, its behavior is 
difficult to discern because we have no closed form solution to the summation. 

Autocorrelation of PSD Approximation 

To analyze the behavior of the autocorrelation function with time, we use a slightly 
different model where now 

( ) sinc
2
fW f  =  

 
. (C41) 

For this function, the Inverse Fourier Transform is identified via the transform pair 

( )sinc 2 rect 2
2
f t  ⇔ 

 
. (C42) 

Consequently, the autocorrelation function is identified by 
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( ) ( )20 1
1 2 0 ref 1 2

1
, 2 rect 2

2

K
k

k

N fR t t C f f t t
f ∆
∆=

 
= − 

 
∑ . (C43) 

Observe that the summation is of a series of rect() functions of different widths.  The 
summation can be rewritten as 

( ) ( )

( )
1 220

1 2 0 ref
1

1

, 2 rect
2

2
4

K

kk

t tNR t t C f
f
f

t∆=
∆

 
 

− =   
     

∑ , (C44) 

where 

1 fτ∆ ∆= . (C45) 

Since 1>∆f , then 1<∆τ .  Consequently, as k increases, the rect() functions get 
narrower.  The widest rect() function is for 1=k .  This yields the observation for this 
model that ( )21,ttR  has a finite span, namely 

( )1 2, 0R t t =     for 1 2
1

1
4

t t
f

− > . (C46) 

As 21 tt −  decreases from ( ) 1
14 −f , the rect() functions begin stacking up.  In fact,  

( )
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rect
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f
f
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∆
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 
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kft t
f

t∆
∆
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 
. (C47) 

Solving the condition for k sets up the equation that evaluates the summation as 

( )

( )

( )1 2
1 2 1

1

1

ln ln
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2
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ft t
t t f
f
f

t
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∆

∆∆=
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   
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∑     for 1 2
1

1
4

t t
f

− ≤ . (C48) 

While this is only strictly true for very specific values of 21 tt − , this is adequate to 
observe the behavior of which we are interested.  Thus, we identify the autocorrelation 
function as 
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Some additional algebra yields 
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1 2

1 2
1

12 ln ln ln
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,
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4

N fC f t t f t t
f f

R t t
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  . (C50) 

We note two important characteristics here 

• ( )21,ttR  is non-negative. 

• ( )21,ttR  decreases with a logarithmic dependence on 1 2t t− . 

First-Order Integration of 1/f Noise 

From the previous Appendix, we recall that the variance after arbitrary orders of 
integration can be calculated as 

( )( ) ( )( )

( )( )
( )

1 1
1 22

1 2 1 22
0 0

,
1 !K

K KT T

y
T t T t

R t t dt dt
K

σ
− −− −

=
−

∫ ∫ . (C51) 

To investigate integration of 1/f noise we will return to the model where 

( )
( )2
1

1
W f

f
=

+
, (C52) 

and recall that 

( )
1

1 22 2

1 2
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,
2

kf t t fK
f

k

BR t t e
π ∆

∆
− −

=

 
=   
 

∑ . (C53) 

We are interested in integrating the noise over time period T, where we limit T such that 

1 21f T f<< << . (C54) 

For one level of integration over time period T we calculate the output variance as 
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Figure 24.  Plots of various gn(x). 
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e a TB T
a T

σ
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=

   − − =        
∑ , (C55) 

where 

( ) 1
1 12 2k k

ka f f f f fπ π −
∆ ∆ ∆= = . (C56) 

Let us now examine the behavior of the function 

1 2
(1 )( ) 2

ze zg z
z

− − −
=   

 
. (C57) 

This is plotted in Figure 24.  Note that this has a ‘low-pass’ behavior with respect to z.  
We note the following asymptotic behaviors 

1)1(1 ≈<<zg , and 

1( 1) 2g z z>> ≈ . (C58) 

This implies a corner frequency at 2=z , and lets us proceed with the approximation 

( )1( ) rect 4g z z≈ . (C59) 



 - 139 -  

The calculation for variance can then be transmogrified to 
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f f f TB T
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  
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∑ . (C60) 

As with the autocorrelation calculation, this describes a set of stacked rect() functions of 
progressively narrower widths.  In particular 

( )1
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2
rect
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f f f T
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π ∆ ∆

=

 
  =
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∑     for 
( )12 1
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kf f f Tπ ∆ ∆ 
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. (C61) 

This can be rewritten as 

( ) ( )1 1

1

2 ln
rect 1

4 ln

kK

k

f f f T f T
f

π π∆ ∆

∆=

   
  = −     

∑ . (C62) 

Consequently, the variance can be written as 

( )
1

2
12 2 ln

1
2 lny

f TB T
f

π
σ

∆

   
= −       

. (C63) 

A further examination of the quantity ( )( )11 ln lnf T fπ ∆−  for some likely parameters 
yields the following exemplar behavior.  For long time durations, 

( )1ln
1 1
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f T
f

π

∆

 
− = 

 
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1
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fπ

=  (C64) 

For T equal to 1/10 this value, and for 10=∆f , 

( )1ln
1 3
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f T
f

π

∆

 
− = 

 
   for 

1

1
10

T
fπ

= . (C65) 

This factor is dwarfed by the 2T  dependence of 
1

2
yσ .  Consequently, we can arguably 

approximate the variance as 

1

2
2 2

2y
B Tσ

 
≈   
 

. (C66) 
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Second-Order Integration of 1/f Noise 

For two levels of integration over time period T we calculate the output variance as 

( ) ( )( )
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2 4
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2 3

ka TK k k k
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k k
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∑ . (C67) 

Let us now examine the behavior of the function 

( )2 3
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Note in Figure 24 that this also has a ‘low-pass’ behavior with respect to z, with the 
following asymptotic behaviors 

2( 1) 1 4g z << ≈ , and 

( )2( 1) 2 3g z z>> ≈ . (C69) 

This implies a corner frequency at 38=z  and lets us proceed with the approximation 

2
1( ) rect
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The calculation for variance can then be transmogrified to 
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As with the autocorrelation calculation, this describes a set of stacked rect() functions of 
progressively narrower widths.  In particular 
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This can be rewritten as 
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This expansion overtly shows the contribution of the 38  corner frequency.  
Consequently, the variance can be written as 

2

2 4
2

1
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B T f T fσ π ∆
    = −         

. (C74) 

Following the analysis of the single integration, this variance is dominated by the 4T  
dependence.  Consequently, we can arguably approximate the variance as 
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. (C75) 

Third-Order Integration of 1/f Noise 

For three levels of integration over time period T we calculate the output variance as 
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Let us now examine the behavior of the function 
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Note in Figure 24 that this also has a ‘low-pass’ behavior with respect to z, with the 
following asymptotic behaviors 

3( 1) 1 36g z << ≈ , and 

( )3( 1) 1 10g z z>> ≈ . (C78) 

This implies a corner frequency at 518=z , and lets us proceed with the approximation 
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The calculation for variance can then be transmogrified to 
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The summation can be rewritten as 
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Consequently, the variance can be written as 
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Following the earlier analysis, this variance is dominated by the 6T  dependence.  
Consequently, we can arguably approximate the variance as 
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nth-Order Integration of 1/f Noise 

We can extrapolate that for n levels of integration of flicker noise over time period T we 
calculate the output variance as predominantly 
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Note that this result has a similarity with the results for random walks. 
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Appendix D – Phase Error Effects on Impulse Response 
The net Impulse Response (IPR) of a SAR system is the ideal point reflector target 
response convolved with the impulse response of a filter exhibiting a phase function that 
is in fact the error.  IPR is discussed in some detail in a prior report.52  Consequently, 
without loss of generality, we can assume that the impulse response of a radar system 
with phase errors is the impulse response of the errors themselves constrained by the 
limits (duration or bandwidth) of the ideal signals.  That is, the system IPR in some 
dimension (range or azimuth) is given in general by the Fourier Transform of the phase 
error factor 

( ) ( )∫
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
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= dtee

T
tux utjtj πφe 2rect  , (D1) 
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z
z

0
211

rect  , 

T   =  the duration of the input signal, and 
( )tεφ   = the phase error function. (D2) 

If window functions are employed for sidelobe control, and they usually are, then this is 
modified to 
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where 

( )zw   = the window function, defined for 1 2z ≤ . (D4) 

A common window function is the Taylor window.53  It is also discussed in some detail 
by Doerry.54 

Clearly, the nature of ( )tεφ  profoundly impacts the system IPR.  Furthermore, the exact 
influence of ( )tεφ  on the IPR also depends on the window function ( )zw .  We now 
examine specific components, or characteristics of ( )tεφ . 
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Quadratic Phase Error 

We now examine the case of a quadratic phase error, namely when 

( )
22


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T
tt q

εε φφ   = the phase error function, (D5) 

where 

q
εφ   = the peak quadratic phase error in the relevant interval T. (D6) 

The IPR is then calculated by evaluating 
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A closed form solution is not possible, so we resort to numerical solutions.  Figure 25 
shows the IPR for various values of q

εφ .  Note that the IPR gets progressively broader as 
q
εφ  increases.  The broadening of the −3 dB width is shown in Figure 26. 

 

Cubic Phase Error 

We now examine the case of a cubic phase error, namely when 

( )
32






=

T
tt c

εε φφ   = the phase error function, (D8) 

where 

c
εφ   = the peak cubic phase error in the relevant interval T. (D9) 

As with the quadratic phase error, we resort to numerical solutions.  Figure 27 shows the 
IPR for various values of c

εφ .  Note that the IPR gets slightly broader as c
εφ  increases, but 

more significantly a problematic sidelobe emerges, and grows rather rapidly.  There is 
also a subtle shift in the location of the mainlobe peak. 
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Figure 25.  Close-up of IPR mainlobe for various amounts of peak quadratic phase error.  Legend 
specifies peak quadratic phase error in degrees.  Data was processed with a Taylor window (−35 dB 
sidelobes, nbar = 4). 

0 20 40 60 80 100 120 140 160 180
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

peak quadratic phase error - degrees

br
oa

de
ni

ng
 fa

ct
or

 o
f -

3 
dB

 w
id

th

 

Figure 26.  Broadening of IPR mainlobe due to quadratic phase error.  Data was processed with a 
Taylor window (−35 dB sidelobes, nbar = 4). 
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Figure 27.  Close-up of IPR mainlobe for various amounts of peak cubic phase error.  Legend 
specifies peak cubic phase error in degrees.  Data was processed with a Taylor window (−35 dB 
sidelobes, nbar = 4). 

-10 -8 -6 -4 -2 0 2 4 6 8 10
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

IP
R

 m
ag

ni
tu

de
 - 

dB
c

relative resolution units

 

 
0 deg
1
2
3
4
5
6

 

Figure 28.  Close-up of IPR mainlobe for various amounts of peak sinusoidal phase error.  Legend 
specifies peak sinusoidal phase error in degrees.  Sinusoidal modulation represents 5.5 cycles per 
period.  Data was processed with a Taylor window (−35 dB sidelobes, nbar = 4). 
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Sinusoidal Phase Error 

We now examine the case of a sinusoidal phase error, namely when 

( ) 2sins mf tt
Tε ε
π

ϕ ϕ  =  
 

  = the phase error function, (D10) 

where 

s
εφ   = the peak sinusoidal phase error in the relevant interval T, and 

mf  = the frequency of the sinusoidal phase modulation in cycles per period T.  
  (D11) 

The IPR is then calculated by evaluating 
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We note that for small peak phase errors, we can approximate 


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π
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This allows us to readily identify the IPR as having a strong otherwise unaltered 
mainlobe, but with the addition of two sidelobes spaced on either side of the mainlobe a 
distance corresponding to mf±  away from the mainlobe.  Furthermore, the peak sidelobe 
level is readily calculated at a level 

2sPSL εφ= , (D14) 

with respect to the mainlobe peak. 

Figure 28 shows the IPR for various values of s
εφ  and 5.5=mf  cycles per period.  Note 

that even low-single-digit degrees of peak phase error raise sidelobes substantially. 
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Random Phase Error 

We now examine the case of a random phase error.  We shall presume a zero-mean, 
band-limited Gaussian random process with standard deviation of r

εφ .  The actual phase 
error modulation is given by 

 

( ) ( )tnt r
εε φφ =   = the phase error function, (D15) 

where 

( )tn   = zero-mean, unit-variance, band-limited Gaussian random process. (D16) 

The process needs to be band-limited to keep the standard deviation finite. 

As with the sinusoidal phase error, the phase transfer function can be approximated for 
small phase errors as 

( ) ( )tnje rtnj r
e

φ φe +≈1  . (D17) 

This is interpreted as equating a small phase noise to a small additive noise, thereby 
allowing easier analysis.  Any signal with this random phase modulation will exhibit a 
Signal to Noise Ratio (SNR) of 

( ) 2−
= rSNR εφ  . (D18) 

Our interest is more in sampled data systems.  In such a system, the input noise is band-
limited to the sampling frequency, and the output of a Discrete Fourier Transform (DFT) 
will improve SNR by the number of data samples less some small amount due to the 
inefficiency of using a window function for sidelobe control.  In this model, r

εφ  is the 
standard deviation of the phase error in each of the samples.  Furthermore, time period T 
represents some finite number of samples such that 

sfMT =  , (D19) 

where 

sf  = the sampling frequency, and 
M  = number of samples taken. (D20) 

The output of the DFT will exhibit a SNR gain to an improved SNR that represents a 
peak signal to an expected sidelobe level calculated as 
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Figure 29.  Integrated Sidelobe Level due to random phase errors. 

 

 

( )2routput
MSNR
εφ

=  . (D21) 

However, there will be noise energy at all possible sidelobe locations.  The total energy 
in all sidelobes is captured in the Integrated Sidelobe Level (ISL), which is the inverse of 
the input SNR, or 

( )2rISL εφ=  . (D22) 

Note that ISL is really a relative power measurement, that is, relative to the power in the 
IPR mainlobe peak. 

Figure 29 illustrates ISL as a function of random phase error standard deviation. 

 



 - 150 -  

 

 

 

 

 

 

 

 

 

 

 

“We must find a way, or we will make one.” 
-- Albert Einstein 
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Appendix E – SAR Azimuth Location Error with 
Constrained Linear Drift 

Herein we estimate the SAR image cross-range (azimuth) target location error due to 
non-ideal motion measurement, albeit constrained in deviation from truth.   

The navigator contributes to location error by two principal mechanisms: 

1. The inherent position error of the radar, i.e. “own-ship position error,” from which 
the relative measurements are made, and 

2. The ‘alignment’ of the synthetic aperture, i.e. the relative position error from one 
pulse to the next; principally the linear component of the line-of-sight own-ship 
range error. 

In this appendix we examine the second of these.  We will treat this as a pointing error of 
the synthetic antenna. 

Discussion 

A typical navigation subsystem is comprised of a GPS-aided Inertial Navigation System 
(INS).  The principal instrument in the INS is the Inertial Measurement Unit (IMU), itself 
typically comprised of three orthogonal accelerometers, and three orthogonal rate-gyros. 

The IMU itself, due to measurement noise, will exhibit a drift in its velocity and position 
solution.  The navigator will, however, generally constrain this drift, ultimately bounded 
by GPS measurement errors.  Our simplified model for this analysis is then given in 
Figure 30. 

With this model, we examine two cases 

1. Aperture tilt bounded by GPS as in Figure 31, and 
2. Aperture tilt bounded by IMU as in Figure 32. 

We will limit our attention to the broadside imaging case (at least for now). 

 

Linear portion of IMU driftGPS constrained error
 

Figure 30.  Simplified model for GPS-constrained navigator drift. 
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Synthetic Aperture Length

GPS constrained aperture ‘tilt’Desired aperture

 

Figure 31.  Aperture tilt bounded by GPS. 

Synthetic Aperture Length

IMU constrained aperture ‘tilt’Desired aperture

 

Figure 32.  Aperture tilt bounded by IMU. 

We define the tilt error two ways.  In terms of position errors, the tilt error is calculated as 
the angle 

2 2
atan pos pos

pos L L
ε ε

φ
 

= ≈ 
 

 , (E1) 

where 

L  = synthetic aperture length, and 
posε = the maximum radar position measurement error from nominal flight path.  

  (E2) 

The synthetic aperture length is calculated via the familiar formula as 

2
wa

a

a RL λ
ρ

=  , (E3) 

where 
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λ   = nominal radar wavelength, 
R  = nominal radar slant range, 

aρ  = nominal azimuth resolution, and 

waa  = azimuth window function IPR broadening factor. (E4) 

Note also that aperture length is the product of radar platform velocity and aperture time, 
namely 

a aL v T=  , (E5) 

where 

av  = nominal radar forward velocity, and 

aT  = synthetic aperture time interval. (E6) 

A typical RMS position variation for a navigator might be 5 cm.  Note that this is the 
relative error, and does not include any constant bias during the synthetic aperture. 

In terms of velocity errors, the tilt error is calculated as the angle 

atan vel vel
vel

a av v
ee

φ
 

= ≈ 
 

 , (E7) 

where 

vele =  line-of-sight velocity error. (E8) 

A typical RMS velocity error limit for a navigator might be 2 cm/s. 

The two synthetic aperture tilt errors are equal when 

2vel a posTee =  . (E9) 

This also means that there is a critical aperture time that marks the boundary between the 
realms where either IMU or GPS errors dominate, this calculated for fixed error limits as 

2 pos
a

vel
T

e
e

=  . (E10) 

For the typical error parameters given above, this critical aperture time is about 5 
seconds. 

This limitation can be expanded in terms of other parameters as 
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4 pos

a a wa vel

R
v a

e
ρle 

=  . (E11) 

This means that GPS limitations increase in significance when apertures are longer in 
time duration, as when 

1. Resolutions are finer, 
2. Velocities are slower, 

3. Ranges are farther, 

and IMU limitations increase in significance otherwise. 

The SAR image azimuth location error is calculated from the synthetic aperture tilt angle 
error as 

( )sinx R Rε φ φ= ≈  . (E12) 

Synthetic Aperture Tilt Bounded by GPS 

Where GPS errors dominate, that is, where position errors dominate, the expected 
azimuth target location error is  

,
4 a

x pos pos
waa
ρ

ε ε
λ

≈  . (E13) 

This is true for synthetic aperture durations greater than the critical aperture time.  Note 
that this error is proportional to resolution but independent of range.   

Aperture Tilt Bounded by IMU 

Where IMU errors dominate, that is, where velocity errors dominate, the expected 
azimuth target location error is  

,velx vel
a

R
v

ee ≈  . (E14) 

This is true for synthetic aperture durations less than the critical aperture time.  Note that 
this error is proportional to range but independent of resolution. 
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Example 

For nominal conditions where 

λ =  0.018 m, 
waa =  1.1822,  

aρ = 0.3048 m,  

av =  100 m/s,  
R =  15 km, 

posε =  5 cm, and 

vele =  2 cm/s, (E15) 

we note that the actual synthetic aperture duration is 5.24 seconds, whereas the critical 
aperture time is 5.0 seconds.  Consequently we would expect the GPS error constraints to 
dominate. 

We calculate the RMS azimuth location error due to GPS constraints as 2.9 m, and the 
RMS azimuth location error due to IMU drift as 3.0 m.  Note that the GPS constraint is 
less, as predicted. 

Comments 

We now offer some general comments. 

• The expected RMS error is taken here as the lesser of the errors due to GPS 
constraints, and IMU drift.  We stipulate that there is probably a more intelligent 
way to combine these. 

• The calculated azimuth location error does not account for own-ship position 
error. 

• The analysis herein does not account for squint angles.  We comment that 
imaging at a non-broadside squint angle has the effect of reducing the effective 
velocity, as the velocity av   herein is assumed to be a tangential (cross-range 
component) velocity of the radar. 

• There is no accommodation herein for layover effects due to inadequate target 
height information, which can be significant at non-broadside imaging 
geometries. 

• The analysis herein does not account for any atmospheric refraction effects. 

• Beyond the critical aperture time, GPS accuracy dominates the target location 
accuracy.  In this realm the target location error does not depend on range, but 
does depend on resolution. 

• The results herein are to first order consistent with Fig. 17 in the paper by Kim, et 
al.1 
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“Fast is fine, but accuracy is everything.” 
-- Wyatt Earp 
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Appendix F – Some Useful Fourier Transform Pairs 
There are many sources in the literature for Fourier Transform Pairs.  We define the 
Fourier Transform herein as 

( ) ( ) 2j ftX f x t e dtπ
∞

−

−∞

= ∫  (E1) 

and the Inverse Fourier Transform as 

( ) ( ) 2j ftx t X f e dfπ
∞

−∞

= ∫ . (E2) 

The notation identifying a transform pair is 

( ) ( )fXtx ⇔ . (E3) 

We also note that Power Spectral Density ( )fS  is related to Autocorrelation ( )tR  as 

( ) ( )fStR ⇔ . (E4) 

Of special interest to this report are the following transform pairs 

( ) 1⇔tδ     (PSD of white noise), (E5) 

( )
f

t
ππ

γ
2
1Ln

⇔
+

−     (PSD of pink noise, or flicker noise), (E6) 

where γ  = Euler’s Constant Gamma, ≈γ 0. 5772, and 

( )22
1

2 f
t

π
⇔

−
    (PSD of red noise, or Brownian noise). (E7) 
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“Always live up to your standards - by lowering them, if necessary.”  
-- Mignon McLaughlin, The Second Neurotic's Notebook, 1966 
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Appendix G – Unit Conversions 
Linear Measures 

1 inch = 0.0254 m 

Acceleration Measures 

1 g ≈ 9.8 m/s2 

1 µg ≈ 9.8 x 10−6 m/s2 

Angular Measures 

1 rad. = π180  deg. 3.57≈  deg. 

1 deg. = 60 min. = 3600 arcsec. 

Angular Rate Measures 

1 h°  = π/648000 rad/s ≈ 4.85 x 10-6 rad/s 
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Figure 33.  The sextant is an historic instrument used to facilitate celestial navigation.  (Image 
courtesy The Visual Dictionary, http://www.infovisual.info/) 
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